

DIGESTION CUM METABOLISM TRIAL IN BROILER RABBIT FED ON

SWEET POTATO BASED RATION

ASIT CHAKRABARTI¹, S.C. BURAGOHAIN² & K.K. BARUAH³

¹ICAR Research Complex for Eastern Region, ICAR Parisar, P.O. Bihar Veterinary College, Patna, Bihar, India ^{2,3}Professor, College of Veterinary Science, Guwahati, Assam Agricultural University, Jorhat, India ³Research Article, Based on Ph D Thesis of First Author Submitted to Assam Agricultural University, India

ABSTRACT

Two breeds of broiler rabbits raised on rations containing various levels of sweet potato (*Ipomoea batatas*) as an energy source at ICAR Research Complex for NEH, Barapani, Meghalaya. Five groups of each weaned Neazealand White (NZ) and Soviet Chinchilla (SC) rabbits, six in each group were fed five is onitrogenous concentrate mixtures containing 0,10,20,30 and 40 percent boiled sweet potato replacing equivalent amount of maize grain for a period of 45 days. Chemical analysis and GE estimation revealed that concentrate mixtures during metabolism trial were isonitrogenous and isocaloric. The percent CP, TDN, DE and ME were almost similar in the composite rations, however, DCP decreased significantly along with the increased level of incorporation of sweet potato in the rations during metabolism trial. DM intake per kg, per 100 kg and per kg $W^{0.75}$ body weight were significantly (P<0.05) higher in Ration 1, 2 and 3 groups than Ration 3, 4 and 5 groups. The values were comparable within Ration 1, 2 and 3 groups and again in Ration 3, 4 and 5 groups. The digestibility coefficient of DM and all organic nutrients were significantly affected by incorporation of sweet potato during metabolism trial. The values of DM, OM, CP and CF were higher in control group (Ration 1) than the experimental groups (Ration 2, 3, 4 and 5), whereas EE was higher in experimental groups. Digestibility as well as metabolisability of GE intake did not differ significantly due to the various rations. The experimental groups show positive balance of N, energy, Ca and P during metabolism trial. All the groups utilized the various nutrients with similar efficiency except DCP utilization. It may be concluded that incorporation of sweet potato as a replacement of maize as energy source in broiler rabbit ration has a positive effect.

KEYWORDS: Digestibility, Feeding, Metabolism, Rabbit, Sweet Potato

INTRODUCTION

The rabbit can play a crucial role in meeting the critical meat shortage in regard to its potential in producing quality meat. Chakrabarti *et al*, 2014 opined that broiler rabbit production is a profitable venture and practiced in many countries in the world including India. According to FAO (1981) in the near future, world nourishing needs will be satisfied for one third of the human population by pork, poultry and rabbit meat. Rabbit farming although a new venture in India, but it is gaining popularity because of its tremendous scope; which grow rapidly and their growth rate is comparable to that of broiler chicken (Rao *et al.*, 1977). This small animal can turn 20 per cent of protein they eat into edible meat under uniform manage mental condition, while for chicken, pig and beef cattle these values are 22 to 23, 16 to 18, 8 to 10, respectively. Rabbits can be raised on high roughage diets or diets without grain which have also comparative advantage

over poultry and swine (Kalita, 1998). The food accounts 70 to 80 per cent of the total production cost in rabbit farming. Therefore, studies have been conducted in India and abroad confirmed that rabbits can be successfully raised on agricultural by-products and unconventional feeds reducing cost of production. Chakrabarti *et al.*, 2017_a and Chakrabarti *et al.*, 2017_b also observed broiler rabbit production was a profitable venture when maize was replaced with sweet potato as an energy source.

The sweet potato (*Ipomoea batatas*) is high yielding short cycle tuber crop and rich in vitamin A, ascorbic acid, thiamin, riboflavin and niacin (Dominguez, 1991). It is also rich in phosphorus, iron and potassium (Scott, 1991, Anon, 2002), which have been found as suitable substitute for maize in livestock feeding (Job *et al.*, 1979; Teguia *et al.*, 1993; Yadav *et al.*, 1995; Abu, 1997; Bora, 1999; Abu *et al.*, 1999 and Nguyen *et al.*, 2000). Sweet potatoes are a good source of energy (70% starch content) and could be used as energy feed for rabbits (Lebas *et al.*, 1986).

MATERIALS AND METHODS

A 45 days feeding trial was conducted at Rabbit Research Farm, ICAR Research Complex for NEH Region, Umium, Meghalaya located at an altitude of 980 m above mean sea level and lying between 25°30' N and 91°51' E. Thirty weaned New Zealand White (NZ) and thirty weaned Soviet Chinchilla (SC) rabbits of 42 days old were divided randomly into five groups of six animals each as per uniformity in their body weight. The experimental rabbits were reared under uniform managemental conditions by housing them individually in clean metallic cages, fitted with feeders and waterers and kept inside well ventilated shed with cemented floor. Five isonitrogenous concentrate mixtures (Ration 1, 2, 3, 4 and 5) with 16% crude protein and 70% total digestible nutrients were prepared with conventional feed ingredients like maize, wheat bran, deoiled rice bran, soya bean meal, ground nut cake, rice husk, fish meal, mineral mixture and common salt. In experimental Ration 2, 3, 4 and 5 maize was replaced by sweet potato at the rate of 25, 50, 75 and 100 per cent level (w/w), respectively.

The digestion cum metabolism trials of 4 days duration were conducted with 3 representative rabbits from each group. The metabolism trial was conducted at 38th day after feeding started. Body weights of the rabbits were recorded before and after metabolism trial in the two consecutive days and the average was considered as final weight.

During the metabolism trial weighed quantity of concentrate were offered at about 8.00 a.m. and 3.00 p.m. in a separate feeder to each rabbit. A well-mixed representative sample from each concentrate mixture was saved in previously labeled polyethylene bags. The residue of each concentrate mixture was collected next day morning before offering fresh feed, in labeled polyethylene bags. Hundred gram (100g) sample of each concentrate mixture offered and residues left were taken in preweighed petridishes and dried in hot air oven at $100 \pm 1^{\circ}$ C overnight to estimate dry matter (DM) content. The pooled dried samples were ground and stored in airtight containers for further analysis. Similarly, representative samples of feed and residue were dried at $60 \pm 2^{\circ}$ C overnight and pooled for gross energy estimation.

Weekly dry matter intake in W_1 , W_2 , W_3 , W_4 , W_5 and W_6 , average daily dry matter intake (ADDI) in different weeks, DM intake per kilogram of body weight and per kilogram of metabolic body weight in different weeks were calculated. Measured quantity of concentrate feed was offered to each of the animal daily. Dry matter percent of supplied and residual feed was determined at the end of the week, taking representative sample of each day. DM intake was calculated by subtracting dry matter of residual feed from dry matter of supplied food.

The faeces voided in 24 hours was collected in previously marked plastic container and weighed daily before

collecting the fresh faeces. The faeces were mixed thoroughly and representative samples of faeces ($1/15^{th}$ of total amount) from each animal were separated in a previously marked wide mouthed Bakelite bottle. From each representative sample a suitable amount was mixed with few ml of 1: 4 sulphuric acid and kept it for nitrogen estimation. The remaining amount of faeces was kept for drying at 100 ± 1°C in hot air oven for DM and other proximate principal estimation. Dried samples were found and stored in previously labeled petridishes.

After measuring the total quantity of urine excreted by each rabbit during 24 hours, an aliquot of $\frac{1}{10}$ th total urine output was transferred individually in duplicate to kjeldhal flasks containing 25 ml of commercial grade sulphuric acid for nitrogen estimation. Another aliquot of $\frac{1}{10}$ th of urine were stored at -20°C for gross energy estimation. The ground representative samples of sweet potato and concentrate offered, residues left, dried and wet faeces were subjected to analysis of proximate principles (AOAC, 1980), gross energy (as per the Gallenkamp manual) and calcium and phosphorus (Talapatra *et al.*, 1940). The urine samples were subjected to analysis of nitrogen (AOAC, 1980).

The experiment was conducted in 2 way interaction design (Snedecor and Cochran, 1980) and data were analysed by using MSTATC package of Computer.

RESULTS AND DISCUSSIONS

The range of crude protein (CP), digestible crude protein (DCP), total digestible nutrients (TDN), digestible energy (DE) and metabolisable energy (ME) in the rations were 18.29 to 18.39, 11.06 to 11.73, 68.40 to 68.50 per cent, 3.14 to 3.20 and 3.03 to 3.06 Mcal/kg of DM for Ration 1, 2, 3, 4 and 5, respectively (Table 1). There was significant difference (P<0.01) in DCP values, but no significant differences were found in CP, TDN, DE and ME. However, TDN, DE and ME contents slightly increased along with the increased level of incorporation of sweet potato in rations.

Constituents	Ration							
Constituents	1	2	3	4	5			
CP (%)	18.392	18.395	18.295	18.330	18.327			
CF (%)	±0.013	± 0.084	±0.015	±0.025	±0.019			
DCP (%)	13.294 ^a	13.052 ^b	12.604 ^c	12.913 ^d	12.642^{d}			
DCF (%)	±0.053	± 0.032	±0.015	±0.011	±0.019			
TDN (%)	69.962	69.932	69.792	70.226	70.085			
IDN(%)	±0.131	±0.172	±0.139	±0.116	±0.110			
DE (Maal/kg DM)	3.145	3.165	3.177	3.200	3.202			
DE (Mcal/kg DM)	±0.016	± 0.025	±0.011	±0.013	±0.015			
ME (Mcal/kg DM)	3.030	3.055	3.055	3.057	3.062			
wie (wieal/kg Divi)	±0.011	± 0.018	±0.027	±0.022	±0.029			

Table 1: Estimated Nutritive Value of Composite Rations (Mean ± SE) During Metabolism Trial

Means with different superscripts in a row differ significantly. ** Significant (P<0.01)

The CP values of composite rations were similar to those reported by Tortuero *et al.* (1989), Biobaku and Ekpenyong (1991), Balogun and Etukude (1991) and Saikia (1998). The CP values were slightly higher than NRC (1977) recommendation for growing rabbits (16%) and were within the range (16-20%) suggested by Deshmukh and Pathak (1991) for growing rabbits. The DCP content of composite rations during the trial was close to the values reported by Srinivas *et al.* (1994), Kumar (1995) and Saikia (1998). The TDN values were slightly higher than NRC (1977) recommendation for growing rabbits (65%). Yadav *et al.* (1995) observed a decreased DCP and increased TDN percent in the sweet potato incorporated diets of pigs. The DE content of all the rations during the trial was higher than the values (2500 Kcal/kg) recommended by NRC (1977). Similarly ME values of the control ration (Ration 1) were lowest as to the

ME concentrations of all sweet potato incorporated rations during the trial, but there was no significant differences among DE and ME values. The higher energy content of Ration 2, 3, 4 and 5 than the control (Ration 1) ration might be due to incorporation of sweet potato in place of maize grain in the concentrate mixture.

Average Daily Feed (DM) Intake

The average feed (DM) consumption (g/day) during the entire feeding trial ranged from 35.02 ± 0.37 to 103.39 ± 0.69 , 36.40 ± 0.44 to 103.33 ± 0.69 , 38.76 ± 0.89 to 103.61 ± 0.79 , 38.31 ± 0.58 to 101.17 ± 0.51 and 37.95 ± 0.75 to 101.33 ± 0.52 g in NW₁, NW₂, NW₃, NW₄ and NW₅, respectively and 36.02 ± 0.80 to 100.94 ± 0.64 , 37.50 ± 0.52 to 103.39 ± 0.69 , 37.67 ± 0.27 to 102.28 ± 0.92 , 36.52 ± 0.34 to 100.50 ± 0.31 and 35.79 ± 0.38 to 100.22 g in SC₁, SC₂, SC₃, SC₄ and SC₅ with the respective average values of 67.84 ± 0.35 , 69.06 ± 0.34 , 69.60 ± 0.50 , 68.42 ± 0.35 , 69.12 ± 0.22 and 67.73 ± 0.24 , 69.59 ± 0.25 70.66 ± 0.21 , 68.39 ± 0.37 and 67.09 ± 0.19 g, respectively (Table 2).

A 44			Ration			Omenall (Dread)
Attribute	1	2	3	4	5	Overall (Breed)
Ι	II	III	IV	V	VI	VII
1st week						
NZ	35.025 ^a	36.405 ^{ab}	38.762 ^c	38.310 ^c	37.952 ^{bc}	37.291
INZ	±0.375	± 0.445	±0.892	± 0.582	±0.752	±0.369
SC	36.025 ^{ad}	37.502 ^{ab}	37.667 ^b	36.525 ^{abd}	35.787 ^{cd}	36.701
sc	±0.801	± 0.525	±0.275	±0.344	±0.377	±0.251
Overall (Ration)	35.525 ^a	36.953 ^b	38.214 ^c	37.417 ^{bc}	36.869 ^b	36.996
Overall (Katioli)	± 0.448	±0.367	±0.475	±0.420	±0.517	±0.225
2nd week						
NZ	45.310 ^a	46.808 ^{ac}	47.498 ^{bcd}	46.952 ^c	48.617 ^d	47.037 ^A
INZ.	±0.379	±0.737	± 0.487	±0.627	± 0.564	±0.310
SC	46.713 ^a	49.667 ^b	50.570 ^{bc}	47.312 ^a	45.882 ^{ad}	48.029 ^B
SC	±0.487	±0.432	±0.221	± 0.846	±0.345	±0.394
Overall (Ration)	46.012 ^a	48.237 ^{bd}	49.034 ^b	47.132 ^c	47.249 ^{cd}	47.533
Overall (Ration)	±0.362	±0.593	±0.529	± 0.505	±0.519	±0.257
3rd week						
NZ	54.572 ^a	57.023 ^{bc}	56.262 ^{abc}	55.690 ^{ab}	57.643 [°]	56.238 ^A
INZ	±0.493	±0.673	±0.677	±0.832	±0.651	±0.343
SC	56.765 ^{ac}	58.335 ^a	61.238 ^b	57.975 ^a	55.833 ^c	58.029 ^B
SC	±0.689	±0.450	±0.692	±0.891	± 0.501	±0.438
Overall (Ration)	55.668 ^a	57.679 ^{bd}	58.750 ^{cd}	56.832 ^{ab}	56.738 ^{ab}	57.134
Overall (Ration)	±0.522	±0.434	±0.881	±0.676	±0.477	±0.299
4th week						
NZ	65.857 ^a	67.953 ^b	67.358 ^b	67.643 ^b	68.455 ^b	67.453
NZ	±0.373	±0.437	±0.743	± 0.540	±0.532	±0.277
50	66.262 ^a	67.737 ^b	70.880 ^c	67.713 ^b	66.262 ^a	67.771
SC	±0.258	± 0.402	±0.313	± 0.482	± 0.566	±0.358
Oreanall (Detion)	66.059 ^a	67.845 ^b	69.119 ^c	67.678 ^b	67.358 ^b	67.612
Overall (Ration)	±0.225	± 0.285	±0.655	±0.345	±0.497	±0.226
5th week						
NZ	78.977 ^{ad}	78.928 ^{ac}	80.215 ^a	78.430 ^{bcd}	79.142 ^{ad}	79.138 ^A
NZ	±0.625	±0.347	±0.530	±0.603	±0.657	±0.258
SC	76.810 ^a	79.215 ^{bd}	79.882 ^b	78.213 ^{cd}	76.240 ^a	78.072 ^B
sc	±0.280	± 0.518	±0.423	±0.378	±0.287	±0.303
Oreanall (Detion)	77.893 ^a	79.072 ^{bd}	80.048 ^c	78.322 ^{ad}	77.691 ^a	78.605
Overall (Ration)	±0.462	±0.301	±0.327	±0.341	±0.555	±0.209
6th week						
NZ	91.762	93.002	93.523	90.737	90.715	91.948 ^A

Table 2: Feed (DM) Consumption (G/Animal) Per Day during the Feeding Trial (Mean ± SE)

Digestion Cum Metabolism Trial in Broiler Rabbit Fed on Sweet Potato Based Ration

	±0.592	±0.575	±1.013	±0.518	±0.613	±0.356
8C	90.620	91.300	92.120	90.548	89.407	90.799 ^B
SC	±0.593	±0.515	±0.751	±0.314	±0.776	±0.304
Ownerall (Detion)	91.191 ^{ab}	92.151 ^{bc}	92.822 ^c	90.642 ^a	90.061 ^a	91.373
Overall (Ration)	±0.435	± 0.448	±0.637	±0.290	±0.511	±0.244
7th week						
NZ	103.388	103.333	103.612	101.167	101.333	102.567 ^A
NZ	±0.690	± 0.688	±0.786	±0.515	±0.524	±0.336
SC	100.945	103.390	102.277	100.500	100.223	101.467 ^B
SC	±0.642	±0.691	±0.925	±0.308	± 0.582	±0.352
Overall (Ration)	102.167 ^a	103.362 ^a	102.944 ^a	100.833 ^b	100.778 ^{bc}	102.017
Overall (Kation)	±0.581	±0.465	±0.613	±0.304	± 0.409	±0.252
During the entire	e feeding tr		al/day)			
NZ	67.840 ^a	69.065 ^{bd}	69.602 ^b	68.417 ^{ad}	69.120 ^{bcd}	68.809
INZ.	±0.347	±0.339	±0.496	±0.348	±0.217	±0.188
SC	67.732 ^{ad}	69.593 ^b	70.660 ^c	68.395 ^d	69.092 ^a	68.694
SC	±0.237	±0.255	±0.211	±0.368	±0.186	±0.262
Overall (Pation)	67.786 ^a	69.329 ^b	70.131 ^c	68.406 ^a	68.106 ^a	68.751
Overall (Ration)	±0.201	±0.217	±0.302	±0.242	±0.335	±0.160

N.B. Sub-class averages with at least one superscript in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

From the perusal of the Table 2, it was observed that throughout the whole experimental period, the intake of feed (DM) per day was found to be lowest in NW_1 and SC_1 group and highest DM consumption was found in NW_3 and SC_3 groups with 50 per cent supplementation of maize with sweet potato. There was no significant difference among the breeds, but there was significant (P<0.01) difference between the ration and ration × breed.

The observed values of average feed consumption per day was comparable to the values reported by Prawirodigdo et al. (1985), Ayer et al. (1992), Srinivas et al. (1994), Bora (1995), Ridzwan et al. (1995), Gupta et al. (1995) and Saikia (1998). The values were lower to the value of 110 to 130 g/day suggested by Lebas (1988) for optimum performance of young growing rabbits which might be due to feeding of all the rations in mash form as rabbits prefer pelleted diet rather than mash form with similar composition (Harris et al., 1983). The tropical environmental conditions, under which the present investigations were undertaken, were other probable reasons for lowered feed intake and supported by Stephan (1980). According to Brody (1964), the zone of thermal neutrality or the comfort zone for rabbits is $21 - 25^{\circ}$ C, however, the atmospheric temperature under which the present study was undertaken ranged from 20.50 to 28.67°C. Kasa et al. (1989) also opined that feed intake decrease by 12% at 30°C than that reared at 22°C. The feed consumption of rabbits increased with decreasing energy concentration of diet to meet calorie requirements (Spreadbury and Davidson, 1978; Pote et al., 1980). With high-fibre, low-energy diets, the rate of passage of digesta is very rapid, allowing a high level of feed intake (Cheeke, 1987). Ridzwan et al. (1993) reported that feed intake increased significantly along with the increase level of incorporation of coccoa-pod husks in the diet of rabbits. Abu et al. (1999) reported a decreased trend of average daily feed intake (g) in sweet potato root based rations than the control group in rabbits. Yadav et al. (1995) also observed a significant decrease in feed (DM) intake (kg/day) due to incorporation of sweet potato tuber in the diets of pig. Marrero (1975) observed that as raw sweet potato progressively replaces cereals in the diet tend to decrease daily feed intake in pigs. Feed intake in the present experiment is similar to the observed value of Gerpacio et al. (1978). They observed that as the level of sweet potato increased there was decreased feed intake.

Total Feed (DM) Consumption during the Entire Feeding Trial

During the entire feeding trial, the total feed (DM) intake was lowest in NZ₁ (2872.00 \pm 13.96 g) and SC₁ (2925.50 \pm 11.72 g and highest in NZ₃ (2777.83 \pm 25.21) and SC₂ (3004.83 \pm 13.91) groups of rabbits (Table 3). Statistical analysis revealed no significant difference between the breed and breed \times ration. However, the significant (P<0.01) differences were found due to rations. On perusal of data it revealed that the control groups (Ration 1) consumed significantly (P<0.01) less feed (DM) than the groups consumed rations incorporated with sweet potatoes.

The present findings are comparable with the findings of Tortuero *et al.* (1989) and Saikia (1998) but, the values were lower than the findings of Rohilla *et al.* (2002). Oyenuga and Fetuga (1975) and Canope *et al.* (1977) opined that cooking of sweet potato increase the digestibility of the nutrients. In the present study the higher feed (DM) intake in sweet potato based ration might be due to increase in palatability and digestibility of the nutrients.

Breed		Overall (Breed)				
breeu	1	2	3	4	5	Overall (Dreeu)
NZ	2872.000	2970.833	2977.833	2950.000	2961.667	2946.467
INZ.	±13.957	± 14.528	± 25.208	±16.717	±13.226	±10.117
SC	2925.500	3004.833	2984.167	2940.000	2973.000	2965.500
SC	±11.719	±13.914	±19.287	± 15.380	±13.952	±8.253
Overall (Ration)	2898.450 ^a	2987.833 ^b	2981.000 ^b	2945.000 ^c	2967.333 ^{bc}	2955.984
Overall (Katioli)	± 11.850	± 10.871	±15.162	±10.935	±9.322	±6.591

Table 3: Total Feed (DM) Consumption (Mean ± SE) (G/Animal) During the Entire Feeding Trial (P<0.01)

Means with different superscripts in a row differ significantly. (P<0.01)

Dry Matter (DM) Intake during Metabolism Trial

The DM intake (g/animal/day) was comparable in respect of Ration 1(Control), 2 and 3 groups and again Ration 1, 4 and 5 groups; however there was no significant difference due to breed and breed × ration. Almost same trend was observed in DM intake per kg, per 100 kg and in per $W_{kg}^{0.75}$ also. There was no significant difference between Ration 1, 2 and 3 and again Ration 3, 4 and 5. The average DM intake (g/animal/day) during metabolism trial were 89.20 ± 0.91, 91.47 ± 0.64, 89.20 ± 1.30, 87.03 ± 0.13 and 87.70 ± 0.84 g for NZ₁, NZ₂, NZ₃, NZ₄ and NZ₅ and 88.77 ± 0.59, 90.57 ± 0.53, 89.78 ± 0.72, 87.70 ± 0.51 and 87.23 ± 0.79 g, respectively (Table 4).

The corresponding values for DM intake per kg body weight were 59.27 ± 0.30 , 60.04 ± 0.25 , 58.42 ± 0.69 , 57.51 ± 0.04 and 58.53 ± 0.46 g for NZ₁, NZ₂, NZ₃, NZ₄ and NZ₅ and 58.89 ± 0.67 , 59.18 ± 0.16 , 59.07 ± 0.60 , 58.20 ± 0.58 and 58.04 ± 1.03 g for SC₁, SC₂, SC₃, SC₄ and SC₅, respectively. The same trend was also recorded for DM intake per 100 kg body weight. Ration 2 groups consumed significantly (P<0.05) higher DM per kg metabolic body weight (66.10 ± 0.28 g) and there were no significant different among Ration 1, 3, 4 and 5 groups and again in 1, 2 and 3 groups.

Table 4: Dry Matter (DM) Consumption (Mean ± SE) by the Experimental Rabbits during Metabolism Trial

Attribute		Overall (Breed)				
Attribute	1	2	3	4	5	Overall (breeu)
I	II	III	IV	V	VI	VII
Average Body W						
NZ	1.505	1.523	1.527	1.513	1.497	1.513
INZ	± 0.008	± 0.004	± 0.004	±0.003	±0.003	±0.003
SC	1.500	1.515	1.530	1.518	1.495	1.512
	±0.003	±0.003	±0.003	±0.002	±0.003	±0.003
Overall (Ration)	1.502^{a}	1.519 ^b	1.528 ^c	1.516 ^b	1.496 ^a	1.512

	±0.004	±0.003	±0.002	±0.002	±0.002	±0.002			
Average Metabo	lic Body W	eight (kg))						
N/7	1.360	1.373	1.373	1.363	1.357	1.365			
NZ	±0.006	±0.003	±0.003	±0.003	±0.003	±0.002			
80	1.357	1.367	1.380	1.370	1.353	1.365			
SC	±0.002	±0.003	± 0.006	± 0.000	±0.003	±0.003			
Orangell (Detion)	1.358 ^a	1.370 ^{bc}	1.377 ^b	1.367 ^c	1.355 ^a	1.365			
Overall (Ration)	±0.003	±0.003	±0.003	± 0.002	±0.002	±0.002			
DM Intake (g/animal/kg)									
	89.200	91.467	89.200	87.033	87.700	88.920			
NZ	±0.907	±0.638	± 1.301	±0.134	±0.839	±0.520			
0.0	88.333	89.667	90.367	88.367	86.767	88.700			
SC	±0.845	±0.410	±0.745	±0.921	±1.489	± 0.488			
	88.767 ^{ab}	90.567 ^a	89.783 ^a	87.700 ^b	87.233 ^b	88.810			
Overall (Ration)	± 0.588	±0.526	±0.719	±0.512	±0.792	±0.351			
DM Intake Per k	g Body W	eight (g)	•		•				
	59.267	60.043	58.420	57.510	58.527	58.753			
NZ	±0.304	±0.248	±0.690	±0.038	±0.458	±0.276			
80	58.890	59.183	59.067	58.197	58.037	58.675			
SC	±0.674	±0.162	±0.596	±0.583	±1.032	±0.282			
$\mathbf{O} = \mathbf{I} \mathbf{I} (\mathbf{D} \cdot \mathbf{I} \cdot \mathbf{I})$	59.078 ^{ab}	59.613 ^a	58.743 ^{abc}	57.853°	58.282 ^{bc}	58.714			
Overall (Ration)	±0.391	±0.234	±0.433	±0.303	±0.517	±0.194			
DM Intake Per 1	00 kg Bod	y Weight	(kg)		•				
	5.927	6.007	5.843	5.753	5.860	5.878			
NZ	±0.028	±0.026	±0.068	± 0.007	±0.044	±0.027			
60	5.887	5.920	5.907	5.817	5.803	5.867			
SC	±0.067	±0.015	±0.059	± 0.058	±0.105	±0.028			
	5.907 ^{ac}	5.963 ^a	5.875 ^{ab}	5.785 ^b	5.832 ^{bc}	5.872			
Overall (Ration)	±0.034	±0.024	±0.043	±0.030	±0.052	±0.019			
DM Intake Per k	g Metabol	ic Body V	Veight (kg)			•			
	65.583	66.600	64.947	63.840	64.640	65.122			
NZ	±0.425	±0.349	±0.788	±0.061	±0.481	±0.307			
60	65.113	65.610	65.490	64.500	64.113	64.965			
SC	±0.774	±0.158	±0.811	±0.673	±1.074	±0.326			
	65.348 ^{ab}	66.105 ^a	65.218 ^{ab}	64.170 ^b	64.377 ^b	65.044			
Overall (Ration)	±0.409	±0.280	±0.520	±0.336	±0.539	±0.221			
				•		1 (1			

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.05)

The observed values of average DM intake per animal per day during metabolism trial were comparable with the reported values (Ridzwan *et al.*, 1993; Sreemannarayana *et al.*, 1993; Srinivas *et al.*, 1994; Kumar, 1995; Bora, 1995; Sundaram *et al.*, 1997; Saikia, 1998; Abu *et al.*, 1999 and Rohilla *et al.*, 2002). The dry matter intake (g/animal/day) was significantly higher in Ration 1, 2 and 3 groups but lower in Ration 4 and 5 groups. Similar observations were reported by Abu *et al.* (1999). Gerpacio *et al.* (1978) observed lower feed intake in control ration than the 50 per cent replacement of corn with sweet potato and also the feed consumption reduced with the increased level of sweet potato in the poultry diet. Marrero (1975) in pigs also observed the similar trend of DM intake due to incorporation of sweet potato in the diet. In the present study similar trend of DM intake was observed in per 100 kg and per kgw^{0.75} body weight. Gerpacio *et al.* (1978) opined that sweet potato at the higher levels in the diet less satisfactory compared with corn, suggesting that for the tuber, only 50 per cent or at the most, 75 per cent replacement of the corn is advisable. Yadav *et al.* (1995) reported a significantly (P<0.01) higher DM intake (kg/100 kg body weight and g/kg w^{0.75}) in 50 per cent sweet potato based rations, whereas significantly (P<0.01) low DM intake in 100 per cent sweet potato based rations than the control group in both the

experiments (Expt. 1 and Expt. 2). Lower DM intake in Ration 4 and 5 (75 and 100 percent sweet potato based diet) could be attributed to lower digestibility and high energy content of the ration. Thus, incorporation of 75 percent sweet potato in rabbit rations had adverse effect on the palatability and voluntary feed intake.

Mean Intake and Digestibility of Various Nutrients

The results pertaining to the intake, voided in faeces, digested and digestibility co-efficient of various nutrients in rabbits during metabolism trial are discussed under this heading.

Intake and Digestibility Co-Efficient of Dry Matter (DM)

Though the total intake of DM did not differ significantly among the breeds and breed × Ration, but differed significantly (P<0.01) between Rations. Significant (P<0.01) differences were observed between breeds, Rations and Ration × breed in respect of DM voided in faeces, DM digested and digestibility co-efficient of DM. DM voided in faeces were significantly higher in SC breed (29.99 \pm 0.52 g) than NZ breed (27.51 \pm 0.35 g) and due to Rations. The groups that consumed sweet potato based rations i.e. Ration 2, 3, 4 and 5 voided significantly (P<0.01) more DM in faeces. NZ breed digested (61.41 \pm 0.34g) significantly (P<0.01) more DM than SC breed (58.71 \pm 0.74 g). There was no significant different among the Ration 1, 2, 3 and again 3, 4 and 5 groups in respect of DM digested. The digestibility co-efficient was significantly (P<0.01) higher in NZ (69.07 \pm 0.28) than the SC breed (66.18 \pm 0.63). The digestibility of DM decreased along with increased level (75 and 100 per cent) of sweet potato in the diet (Table 5).

 Table 5: Mean Intake (Mean ± SE) and Digestibility Coefficient of Dry Matter (DM) in Rabbits during Metabolism Trial

A 44			Ration			Omenell (Dread)			
Attribute	1	2	3	4	5	Overall (Breed)			
DM Intake (g/animal/day)									
NZ	89.200	91.467	89.200	87.033	87.700	88.920			
INZ	±0.907	±0.638	±1.301	±0.134	±0.839	±0.521			
SC	88.333	89.667	90.367	88.367	86.767	88.700			
SC	± 0.845	±0.410	±0.745	±0.921	±1.489	± 0.488			
Overall (Ration)	88.767 ^{ab}	90.567 ^a	89.783 ^a	87.700 ^b	87.233 ^b	88.810			
Overall (Katioli)	± 0.588	± 0.526	±0.719	±0.512	±0.792	±0.351			
DM Voided in Fa		imal/day)							
NZ	28.100^{ac}	29.500 ^a	26.467 ^b	26.100 ^b	27.400 ^{bc}	27.513 ^A			
INZ.	±0.305	± 0.208	±0.491	±0.305	±0.208	±0.347			
SC	26.967 ^a	29.033 ^b	30.967 ^c	31.367 ^c	31.600 ^c	29.987 ^B			
sc	±0.186	±0.176	±0.851	±0.546	± 0.889	±0.524			
Overall (Ration)	27.533 ^a	29.267 ^b	28.717 ^b	28.733 ^b	29.500 ^b	28.750			
Overall (Katioli)	±0.300	± 0.160	± 1.098	±1.210	±1.024	±0.385			
DM Digested (g/a	animal/day	7)							
NZ	61.100	61.967	62.733	60.933	60.300	61.407 ^A			
INZ.	±0.603	± 0.498	±0.939	±0.291	±0.907	±0.345			
SC	61.367 ^a	60.633 ^a	59.400 ^{ab}	57.000 ^{bd}	55.167 ^{cd}	58.713 ^B			
50	±0.731	±0.233	±1.595	± 0.866	±1.317	±0.736			
Overall (Ration)	61.233 ^a	61.300 ^a	61.067 ^a	58.967 ^b	57.733 ^{bc}	60.060			
Overall (Katioli)	± 0.428	± 0.386	±1.114	± 0.970	±1.352	±0.472			
Digestibility Co-									
NZ	68.500^{ab}	67.747 ^b	70.330 ^c	70.013 ^{ac}	68.750 ^{abc}	69.068 ^A			
112	±0.031	±0.154	±0.316	±0.340	±0.415	±0.280			
SC	69.473 ^a	67.620 ^b	65.710 ^c	64.503 ^{cd}	63.573 ^d	66.176 ^B			
	±0.213	±0.049	±1.216	±0.585	±0.902	±0.634			
Overall (Ration)	68.987^{a}	67.683 ^b	68.020 ^{ab}	67.258 ^{bc}	66.162 ^c	67.622			

The dietary variations significantly influenced the digestibility co-efficient of DM (DCDM) which were well nearer and within the reported range of 56 to 72 (Grobner *et al.*, 1985), 48.21 to 74.15 (De Blas *et al.*, 1986), 57.55 to 74.62 (Bora *et al.*, 1996) and 54.40 to 73.01 (Saikia, 1998) in rabbits. Gerpacio *et al.* (1978) observed that digestibility of DM decreased as the level of replacement of corn is increased with sweet potato roots in broiler birds. Oyenuga and Fetuga (1975) and Canope *et al.* (1977) found that cooking sweet potato improved digestibility of all nutrients (Raw 90.4% DMDC and cooked 93.5% DMDC). Dominguez *et al.* (1991) also reported a lower level of DM digestibility along the increase level of sweet potato root in the pigs diet. Whereas, Yadav *et al.* (1995) reported significantly (P<0.01) higher digestibility percent (64.93 to 85.08 in Expt. 1 and 67.14 to 76.24 in Expt. 2) in pigs due to the incorporation of sweet potato in diets. Abu *et al.* (1999) observed a decreasing trend of digestibility co-efficient of DM in rabbits at increased level of sweet potato incorporation in the diets. The DC was higher in T₃ (80: 20 – sweet potato top: dehydrated sweet potato root meal) and the values ranged from 50.88 to 60.51 per cent. The present findings are in agreement with the findings of above workers.

Intake and Digestibility Coefficient of Organic Matter (OM)

There were no significant differences between breed, ration and breed × ration in respect of OM intake. However, significant differences were observed in breed, ration and breed × ration in respect of OM voided in faeces. The NZ breed $(31.92 \pm 0.86 \text{ g})$ voided more OM in faeces than SC breed $(30.27 \pm 0.77 \text{ g})$. It was found that no significant differences in OM digested and digestibility co-efficient in breed and ration × breed, but significant (P<0.01) differences were among the rations. The OM digested and digestibility co-efficient of OM was significantly (P<0.01) lower along with the incorporation of sweet potato level in the rations. The digestibility co-efficient percent were 66.47 ± 0.38 , 62.37 ± 0.69 , 58.35 ± 1.09 , 57.62 ± 0.50 and 56.66 ± 0.07 for Ration 1, 2, 3, 4 and 5, respectively (Table 6).

Attributo			Ration			Orignall (Broad)
Attribute	1	2	3	4	5	Overall (Breed)
OM Intake (g/an						
NZ	80.173	82.210	80.170	78.230	78.823	79.921
INZ.	±0.813	± 0.574	±0.171	±0.120	± 0.752	± 0.468
SC	79.393	77.853	81.220	79.423	77.987	79.175
30	± 0.758	± 2.463	±0.670	±0.827	±1.338	±0.616
Overall (Ration)	79.783	80.032	80.695	78.827	78.405	79.548
Overall (Katioli)	±0.527	± 1.493	±0.647	±0.459	±0.711	±0.386
OM Voided in Fa	neces (g/ar)			
NZ	26.563 ^a	30.857 ^b	34.673 ^c	32.450 ^b	35.073 ^c	31.923 ^A
INZ.	±0.713	±0.722	± 0.907	±0.369	±0.462	± 0.862
SC	26.967 ^a	29.307 ^b	32.490 ^c	34.380 ^d	28.203 ^{ab}	30.269 ^B
50	±0.107	± 0.526	±0.670	±0.669	±0.613	±0.766
Overall (Ration)	26.765 ^a	30.082 ^b	33.582 ^c	33.415 ^c	31.638 ^d	31.096
Overall (Katioli)	±0.335	±0.529	± 0.702	± 0.550	± 1.574	± 0.587
OM Digested (g/s	animal/da	y)				
NZ	53.610	51.353	45.497	45.780	43.750	47.998
INZ	±0.499	±0.417	±1.996	±0.463	±0.821	±1.086

 Table 6: Mean Intake (Mean ± SE) and Digestibility Coefficient of Organic Matter (OM) in Rabbits

 During Metabolism Trial

SC	52.457	48.547	48.730	45.043	45.117	47.979			
sc	±0.767	± 2.495	±0.510	±0.258	± 1.575	±0.902			
Overall (Detion)	53.033 ^a	49.950 ^b	47.113 ^c	45.412 ^{cd}	44.433 ^d	47.988			
Overall (Ration)	± 0.484	± 1.294	± 1.171	±0.289	± 0.850	±0.694			
Digestibility Co-Efficient of OM (%)									
NZ	66.873	62.473	56.703	58.520	55.497	60.013			
INZ	±0.657	± 0.677	±0.683	±0.518	± 0.676	±1.169			
SC	66.067	62.277	60.000	56.720	57.817	60.576			
sc	±0.344	± 1.377	±0.641	±0.426	± 1.058	±0.951			
Overall (Ration)	66.470 ^a	62.375 ^b	58.352 ^c	57.620 _c	56.657 ^c	60.295			
Overall (Katioli)	±0.378	± 0.688	± 1.092	±0.502	±0.764	±0.742			

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

The organic matter (OM) intake during the metabolism trial followed the trend similar with that was observed in DM intake by the rabbits. The OM intake did not differ significantly among the breed, ration and ration \times breed. The digestibility co-efficient of organic matter (DCOM) was significantly (P<0.01) influenced by the dietary variation. Similar comparable values of DCDM were observed in NZW rabbits (De Blas et al., 1986; Saikia, 1998) and in Grey Giant rabbit (Srinivas et al., 1994). The observed values of digestibility of sweet potato tuber in respect of organic matter per cent were 92.1 in raw, 94.5 in cooked (Canope et al., 1977), 96.1 in raw (Rose and White, 1980), 91.0 in silage (Tomita et al., 1985) and 91.8 in chips (Noblet et al., 1990). McDonald et al. (1973) reported that an increase in the crude fibre content of feeds by one percentage unit causes a reduction in the digestibility of total organic nutrients of 0.7 to 1.0 units for ruminants and of twice this value in pigs. Oyenuga and Fetuga (1975) and Canope et al. (1977) opined that cooking of sweet potato improved digestibility of all nutrients. Gercapio et al. (1978) observed a decreasing trend of digestibility co-efficient in poultry birds after gradual increase in sweet potato level in the diet and suggested that only 50 per cent or at the most 75 per cent replacement of the corn is advisable with sweet potato roots. Dominguez et al. (1991) observed that inclusion of sweet potato foliage lowered the digestibility of all nutrients due to increases in the fibre content of the diet. Yadav et al. (1995) reported significantly (P<0.01) increased digestibility co-efficient of organic matter after feeding sweet potato tuber in the pigs. The value increased from 71.02 ± 0.48 to 78.77 ± 0.01 per cent. Abu *et al.* (1999) observed a decreased trend of digestibility co-efficient of DM in rabbits at increased level of sweet potato incorporation in the diets. The DC was higher in T_3 (80:20 - sweet potato top: dehydrated sweet potato root meal) and the values ranged from 50.88 to 60.51 per cent). The results obtained in the present study, was in agreement with the reported results of above workers. Significantly lowered DCOM during metabolism trial in the sweet potato based rations (Ration 2, 3, 4 and 5) than the control group (Ration 1) might be due to increased level of sweet potato in the composite ration.

Intake and Digestibility Co-Efficient of Crude Protein (CP)

There was no significant difference between the breed, breed × ration in respect of CP intake, CP digested and digestibility co-efficient of CP, but there was significant (P<0.01) difference among the breeds in respect of CP voided. NZ breed (4.88 \pm 0.06 g) voided more CP in faeces than SC breed (4.80 \pm 0.05 g). No significant differences were recorded among the Ration 1, 2, 3 and again in 1, 4, and 5 in respect of CP intake. During the metabolism trial increasing trend of CP voided in faeces, and a declining trend in CP digested and digestibility co-efficient was observed along with the increasing level of sweet potato in the diets (Table 7). The digestibility of co-efficient of CP were 72.28 \pm 0.32, 70.96 \pm 0.07, 68.89 \pm 0.27, 70.45 \pm 0.39 and 68.98 \pm 0.31 in Ration 1, 2, 3 and 4 and 5, respectively (Table 7).

A 44			Ration			Omenall (Dread)				
Attribute	1	2	3	4	5	Overall (Breed)				
CP Intake (g/ani	CP Intake (g/animal/day)									
NZ	16.393	16.813	16.393	15.997	16.120	16.343				
INZ.	±0.168	±0.116	±0.238	±0.026	±0.156	±0.096				
SC	16.233	16.448	16.607	16.243	15.947	16.303				
SC	±0.154	±0.076	0.137	±0.169	±0.274	±0.090				
Overall (Detion)	16.313 ^{abc}	16.648 ^{ab}	16.500^{a}	16.120 ^c	16.033 ^c	16.323				
Overall (Ration)	±0.108	±0.096	±0.132	±0.094	±0.146	±0.065				
CP voided in Fae	eces (g/anin	nal/day)								
NZ	4.527	4.873	5.163	4.833	5.030	4.885 ^A				
INZ	±0.050	±0.050	±0.032	±0.064	±0.035	±0.060				
SC	4.513	4.797	5.100	4.690	4.910	4.802^{B}				
sc	±0.054	±0.009	±0.061	±0.038	±0.031	±0.055				
Overall (Detion)	4.520^{a}	4.835 ^b	5.132 ^c	4.762 ^b	4.970 ^d	4.844				
Overall (Ration)	±0.033	±0.029	±0.034	±0.046	±0.034	±0.041				
CP Digested (g/a	nimal/day)									
NZ	11.867	11.940	11.230	11.163	11.090	11.458				
NZ	±0.174	±0.071	±0.228	± 0.087	±0.155	±0.114				
SC	11.720	11.687	11.507	11.553	11.037	11.501				
SC	±0.202	±0.067	± 0.082	±0.171	±0.277	±0.094				
Oreanall (Detion)	11.793 ^a	11.813 ^a	11.368 ^b	11.358 ^b	11.063 ^b	11.479				
Overall (Ration)	±0.124	±0.072	±0.125	±0.122	±0.142	±0.073				
Digestibility Co-	Efficient of	CP (%)								
NZ	72.380	71013	68.493	69.783	68.790	70.092				
NZ	±0.406	±0.132	±0.422	±0.442	±0.341	±0.410				
SC	72.187	70.900	69.293	71.117	69.180	70.535				
sc	±0.572	±0.079	±0.149	±0.372	±0.576	±0.343				
Quarall (Batian)	72.283 ^a	70.957 ^b	68.893 ^c	70.450 ^b	68.985 ^c	70.314				
Overall (Ration)	±0.317	±0.074	±0.269	±0.394	±0.312	±0.266				

Table 7: Mean Intake (Mean ± SE) and Digestibility Coefficient of Crude Protein (CP) in Rabbits **During Metabolism Trial**

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

The observed values of crude protein (CP) intake during metabolism trial were comparable to the reported values (10.39 to 16.60 g/day) by Kumar (1995), (13.12 to 15.23 g/day) by Saikia (1998) and (10.87 to 17.15 g/day) by Rohilla et al. (2002). The CP intake (Table 4.18) followed the similar trend observed in DM intake. The variation in CP intake might be for the variation observed in DM intake by the rabbits and the reason for this variation might be the same as discussed at DM intake. The values of digestibility co-efficient of crude protein (DCCP) in rabbits were significantly (P<0.01) lowered in the sweet potato based rations (Ration 2, 3, 4 and 5) than the control group (Ration 1). The observed values of the present experiment were comparable and within the reported range of 63.56 to 78.34 (De Blas et al., 1986), 62.6 to 78.0 (Aderibigbe et al., 1990), 61.0 to68.8 (El-Sayaad, 1992), 48.80 to 70.29 (Kumar, 1995) and 60.93 to 72.28 (Saikia, 1998) and 61.88 to 74.77 (Abu et al., 1999) in rabbits. Protein digestibility is closely related to the quantity of protein (De Blas et al., 1984) and the type of raw material incorporated in the diet (Fraga et al., 1984). Amino acid analysis of sweet potato roots shows them to be of good nutritional quality but deficient in total sulphur amino acids and lysine in terms of the ideal protein (Fuller and Chamberlain, 1982). The presence of trypsin inhibitors in the raw sweet potato roots could decrease the protein digestibility in mixed feed. In raw sweet potato the percentage of trypsin inhibitor is 78.8 whereas in cooked sweet potato is only 16.7 per cent (Martinez and Dominguez, 1991). Gerpacio et al. (1978) conducted an experiment with poultry chicks by replacement of corn with various levels of sweet potato and observed that the digestibility of protein decreased

121

122

along with the increased level of sweet potato. The digestibility of sweet potato per cent in respect of nitrogen were reported by Canope et al., 1977 (27.6 in raw and 52.8 in cooked), Rose and White, 1980 (49.8 in raw), Tomita et al., 1985 (32 in silage) and Noblet et al., 1990 (52.3 in chips). French (1955) observed the digestibility per cent of crude protein in fresh sweet potato in sheep was 37.5, whereas, Nenmark (1970) reported only 14.0 per cent. Tomita et al. (1985) evaluated ensiled sweet potato and observed the poor nitrogen digestibility and was probably due to antitryptic factors, which though low, are not totally eliminated by means of this method of conservation (Lin et al., 1988). Aderibigbe et al. (1990) reported that DCCP decreased along with the increased level of almond hulls in the diet of NZW rabbits. Dominguez et al. (1991) observed that the digestibility of nitrogen decreased from 89.6 to 73.3 percent along with the increased level of sweet potato roots in the pigs diet and opined that the nitrogen digestibility is somewhat low because of the poor digestibility of sweet potato protein, even when cooked. Yadav et al. (1995) reported the digestibility per cent of crude protein in pigs to be 40.99 to 63.29 in Expt. 1 and 52.42 to 60.00 in Expt. 2 and the values were decreased along with the increased level of sweet potato tuber in diets in both the experiments and opined that this might be due to low crude fibre content in the rations. Abu et al. (1999) found a decreased trend of CP digestibility in the ration of rabbit along with the increased level of sweet potato incorporation in the diet. The maximum CP digestibility was observed in T₃ (80% dehydrated sweet potato tops and 20% root meal) ration. In the present study, the digestibility co-efficient of CP showed a decreasing trend along with increase level of sweet potato in the ration. This might be due to increased level of sweet potato tuber in the concentrate mixture.

Intake and Digestibility Co-Efficient of Ether Extract (EE)

There were no significant differences among the breed (except ether extract intake), breed × ration in respect of intake, voided in faeces, digested and digestibility co-efficient. However, there were significant differences among the rations in respect of intake, voided in faeces, digested and digestibility co-efficient, respectively. Ether extract intake was significantly higher (P<0.05) in NZ (2.37 ± 0.09 g) than SC (2.35 ± 0.01 g) and the groups those consumed sweet potato based rations i.e. Ration 2 (2.37 ± 0.01), Ration 3 (2.36 ± 0.01), Ration 4 (2.36 ± 0.00) and Ration 5 (2.37 ± 0.02) g, respectively than the Ration 1 (control) group (Table 8). An increasing trend of ether extract digestibility was observed in sweet potato based rations i.e. Ration 2, 3, 4 and 5 than control group (Ration 1). Digestibility co-efficient was found to be higher in all the experimental groups than the control group.

 Table 8: Mean Intake (Mean ± SE) and Digestibility Coefficient of Ether Extract (EE) in Rabbits

 During Metabolism Trail

Attribute				Organall (Broad)					
Attribute	1	2	3	4	5	Overall (Breed)			
EE Intake (g/ani	EE Intake (g/animal/day)								
NZ	2.2330	2.390	2.360	2.367	2.397	2.369 ^A			
INZ	±0.025	±0.017	± 0.006	± 0.009	±0.012	±0.009			
SC	2.320	2.353	2.353	2.363	2.350	2.348 ^B			
30	±0.015	±0.012	± 0.009	± 0.003	± 0.025	± 0.007			
Overall (Ration)	2.325 ^a	2.372 ^b	2.357 ^b	2.365 ^b	2.373 ^b	2.358			
Overall (Katioli)	±0.013	±0.012	± 0.005	± 0.004	±0.016	±0.006			
EE Voided in Fa	eces (g/ani	imal/day)							
NZ	0.503	0.480	0.517	0.490	0.503	0.499			
INZ	± 0.009	± 0.006	± 0.007	± 0.006	±0.003	±0.004			
SC	0.513	0.480	0.510	0.500	0.503	0.501			
SC	±0.003	± 0.006	±0.006	± 0.006	±0.009	± 0.004			
Overall (Ration)	0.508^{a}	0.480^{b}	0.513 ^a	0.495 ^c	0.503 ^{ac}	0.500			

Digestion Cum Metabolism Trial in Broiler Rabbit Fed on Sweet Potato Based Ration

	±0.005	±0.004	±0.004	±0.004	±0.004	±0.003			
			±0.004	± 0.004	±0.004	±0.005			
EE Digested (g/animal/day)									
NZ	1.827	1.910	1.843	1.877	1.893	1.870			
INZ	±0.034	±0.015	±0.012	±0.014	±0.013	±0.011			
SC	1.807	1.873	1.843	1.863	1.877	1.853			
sc	±0.012	±0.017	±0.003	± 0.007	±0.014	± 0.008			
Overall (Ration)	1.817 ^a	1.892 ^b	1.843 ^{ac}	1.870^{bc}	1.885 ^b	1.861			
Overall (Katioli)	±0.017	±0.013	± 0.006	± 0.008	±0.010	± 0.007			
Digestibility Co-	Efficient o	of EE (%)							
NZ	78.383	79.913	78.107	79.290	78.997	78.938			
INZ	±0.615	±0.210	±0.329	±0.321	±0.198	±0.221			
SC	77.873	79.600	78.330	78.843	78.850	78.699			
50	±0.031	±0.329	±0.165	± 0.247	±0.422	± 0.186			
Overall (Ration)	78.128 ^a	79.757 ^b	78.218 ^a	79.067 ^c	78.923 ^c	78.819			
Overall (Katioli)	±0.298	±0.188	±0.172	±0.207	±0.211	±0.144			

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

Significant difference (P<0.05) was observed among the breeds and between the control group (Ration 1) and sweet potato based rations (Ration 2, 3, 4 and 5). The intake of EE in present study was higher than the reported values (1.41 to 1.67 g/day) of Saikia (1998). The digestibility co-efficient values of ether extract observed in metabolism trial were comparable to the values reported by El-Baki *et al.* (1992) and Saikia (1998) in NZW rabbits, Ridzwan *et al.* (1993) in French White rabbits. However, values were lower than the reported value 81.17 to 83.20 (Kumar, 1995) in WG and SC rabbits. French (1955) observed the digestibility percent of ether extract in fresh sweet potato tuber in sheep as 51.6, whereas Nenmark (1970) reported 74.0 per cent. Yadav *et al.* (1995) found the digestibility co-efficient of ether extract in pig in Expt.1 63.89 (control), 67.77 (50% sweet potato tuber with vines) and 52.27 (100% sweet potato with vines) and in Expt.2 55.26 (without sweet potato tubers) and 57.21% (with sweet potato tubers). Swarooparani *et al.* (1997) showed that enhanced dietary energy levels improved the digestibility of ether extract. Abu *et al.* (1999) reported apparent digestibility of ether extractives to be 80.12 to 87.26 per cent in rabbit when sweet potato root was incorporated in the diets and DC was maximum in T₄ (70:30, dehydrated sweet potato top: root meal) ration. The higher digestibility of EE in Ration 4 and 5 might be due to higher intake of EE from these rations.

Intake and Digestibility Co-Efficient of Crude Fibre (CF)

There were no significant differences among the breed in respect of CF intake, voided in faeces, CF digested and digestibility co-efficient of CF. However, there were significant differences among the ration, ration × breed in all the above mentioned traits. In respect of CF intake and CF voided there was an increasing trend along with the increased percentage of sweet potato level in the diet. CF digested was maximum in Ration 1 (4.20 ± 0.10 g) and Ration 5 (3.96 ± 0.06 g) followed by Ration 2 (3.53 ± 0.03), Ration 4 (3.42 ± 0.03 g) and Ration 3 (3.36 ± 0.06 g) groups, respectively (Table 9). The digestibility co-efficient was highest in control group (45.40 ± 0.63) followed by Ration 5 (41.19 ± 0.49), Ration 2 (38.85 ± 0.38), Ration 4 (37.25 ± 0.33) and Ration 3 (37.05 ± 0.53) groups, respectively (Table 9).

A 44	Ration								
Attribute	1	2	3	4	5	(Breed)			
CF intake (g/an	imal/day)								
NZ	9.453 ^a	9.107 ^b	9.033 ^b	9.167 ^b	9.583 ^a	9.269			
INZ	±0.118	± 0.048	±0.049	±0.009	±0.035	±0.061			
SC	9.173 ^a	9.073 ^a	9.090 ^a	9.177 ^a	9.627 ^b	9.228			
30	±0.014	±0.022	±0.035	±0.019	±0.072	±0.056			
Overall	9.313 ^a	9.090 ^{bc}	9.062 ^b	9.172 ^c	9.605 ^d	9.248			
(Ration)	± 0.082	±0.025	±0.030	±0.009	±0.037	±0.041			
CF Voided in Fa	aeces (g/anima	l/day)							
NZ	5.097+	5.630 ^b	5.750 ^b	5.707 ^b	5.713 ^b	5.579			
INZ.	± 0.050	±0.046	±0.058	± 0.050	±0.052	± 0.068			
SC	5.130 ^a	5.487 ^{be}	5.657 ^c	5.803 ^d	5.567 ^{ce}	5.529			
50	±0.011	±0.047	±0.027	±0.012	±0.034	±0.061			
Overall	5.113 ^a	5.558 ^b	5.703 ^{cd}	5.755°	5.640 ^{bd}	5.554			
(Ration)	±0.024	±0.043	±0.035	±0.031	±0.043	±0.045			
CF Digested (g/									
NZ	4.357 ^a	3.477 ^b	3.328 ^b	3.460 ^b	3.870 ^c	3.689			
INZ.	±0.151	±0.022	±0.082	±0.046	±0.075	±0.108			
SC	4.043 ^a	3.587 ^b	3.433 ^{bc}	3.373°	4.060^{a}	3.699			
30	±0.003	±0.035	±0.059	±0.023	±0.042	± 0.080			
Overall	4.200^{a}	3.532 ^{bd}	3.358 ^c	3.417 ^{cd}	3.965 ^e	3.694			
(Ration)	±0.097	±0.031	±0.056	±0.030	±0.057	±0.066			
Digestibility Co	-Efficient of C	CF (%)							
NZ	46.063 ^a	38.177 ^{bd}	36.340 ^c	37.747 ^{cd}	40.377 ^e	39.741			
NZ.	±1.503	±0.259	±0.782	±0.515	±0.677	±0.952			
SC	44.743 ^a	39.530 ^b	37.767 ^c	36.760 [°]	42.003 ^d	40.161			
50	±0.659	±0.428	±0.512	±0.197	±0.296	±0.794			
Overall	45.403 ^a	38.853 ^b	37.053 ^c	37.253 ^c	41.190 ^d	39.951			
(Ration)	±0.629	±0.376	±0.526	±0.331	±0.491	±0.610			

 Table 9: Mean Intake (Mean ± SE) and Digestibility Coefficient of Crude Fibre (CF) in Rabbits

 During Metabolism Trial

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

The observed range of total crude fibre intake (g/animal/day) during metabolism trial was comparable to the reported range of 6.88 to 10.88 g/day by Kumar (1995) and 7.62 to 9.52 g/day by Saikia (1998). The significant (P<0.01) variation in CF intake during the metabolism trial might be due to the variation in the DM intake by rabbits and the CF content of concentrate mixtures. Diets significantly (P<0.01) influenced the digestibility co-efficient of crude fibre (DCCF) during metabolism trial. The observed range of DCCF were comparable to the reported range of 16.7 to 40.0 by Martinez Pascual and Fernandez Carmona (1980), 18.32 to 38.33 by Bora *et al.* (1996), 18.96 to 38.35 by Dutta *et al.* (1997), 15.83 to 41.56 by Saikia (1998), but higher than the values (17.35 to 32.26) reported by De Blas *et al.* (1986). Digestibility of the crude fibre is related to the cellulose and hemicellulose fraction of the feed since feed high in cellulose and lignin generally have a CF digestibility of less than 15 per cent in rabbits (Voris *et al.*, 1940; Maertens and De Groote, 1984). De Blas *et al.* (1986) reported that DCCF was higher (32.26%) in the diet with lowest fibre content than in all the other diets (17.5%). Ridzwan *et al.* (1993) observed slightly lower crude fibre digestibility in rabbits receiving diets containing cocoa-pod husks due to higher level of cellulose than the control diet. Gerpacio *et al.* (1978) observed in poultry birds that the increased level of incorporation of sweet potato from 0 to 100 per cent decreased the CF digestibility from 59.5 to 34.0 per cent. Dominguez *et al.* (1991) reported that digestibility of CF decreased from 76.6 to 67.7 per cent along with the increased level of incorporation of sweet potato in the pig ration. However, Yaday *et al.* (1995) observed a significant

125

(P<0.05) increase in CF digestibility per cent (51.06 to 57.61 in Experiment. 1 and 47.01 to 64.50 in Experiment. 2) in pigs with increased level of sweet potato tubers in the diet. Whereas, Abu *et al.* (1999) reported no significant difference in apparent digestibility of crude fibre (range 30.68 to 34.88) due to increased level of sweet potato in the rabbit rations

The significantly lower digestibility co-efficient of CF was observed in the sweet potato incorporated diets (Ration 2, 3, 4 and 5) as the level of fibre in these rations were higher than the control diet (Ration 1).

Intake and Digestibility Co-Efficient of Nitrogen Free Extract (NFE)

There were no significant differences among the breed, breed \times Ration in respect of NFE intake, voided in faeces, digested and digestibility co-efficient. However, significant differences were found among the rations in all the above mentioned traits. There was an increasing trend of NFE intake, NFE digested and digestibility co-efficient along with the increasing level of sweet potato in the rations. The same trend was also followed in NFE voided in faeces except Ration 5 groups (Table 10).

A 44								
Attribute	1	2	3	4	5	Overall (Breed)		
NFE Intake (g/animal/day)								
NZ	51.897	52.693	52.627	54.153	52.663	52.807		
INZ.	± 0.528	±0.369	±0.767	±0.554	±0.279	±0.280		
SC	51.393	51.657	53.317	53.030	52.603	52.400		
30	± 0.490	±0.234	±0.438	±0.126	±0.687	±0.262		
Overall (Ration)	51.645 ^a	52.175 ^{ac}	52.972 ^{bc}	53.592 ^b	52.633 ^{ab}	52.603		
Overall (Ration)	±0.341	±0.303	±0.424	±0.357	±0.332	±0.192		
NFE Voided in F	aeces (g/aı	nimal/day)						
NZ	15.737	16.870	16.847	17.930	15.403	16.557		
INZ.	±0.292	±0.178	±0.179	±0.346	±0.162	±0.258		
SC	15.827	17.083	16.200	16.527	15.777	16.283		
30	± 0.358	±0.180	±0.555	±0.362	±0.289	±0.190		
Overall (Ration)	15.782 ^a	16.977 ^{bc}	16.523 ^b	17.228 ^c	15.590 ^a	16.420		
Overall (Katioli)	± 0.208	±0.123	±0.298	±0.386	±0.170	±0.160		
NFE Digested (g/	/animal/da	y)						
NZ	36.160	35.823	35.780	36.223	37.260	36.249		
INZ.	±0.292	±0.262	±0.774	±0.473	±0.383	±0.229		
SC	35.567	34.573	37.117	36.503	36.827	36.117		
50	± 0.847	±0.401	±0.620	±0.324	±0.437	±0.326		
Overall (Ration)	35.863 ^{ac}	35.198 ^a	36.448 ^{bc}	36.363 ^{bc}	37.043 ^b	36.183		
Overall (Katioli)	±0.422	±0.352	±0.535	±0.264	±0.277	±0.196		
Digestibility Co-	Efficient of	f NFE (%)						
NZ	69.677	67.983	67.977	66.893	70.747	68.655		
INZ.	±0.313	±0.222	± 0.552	± 0.542	±0.403	±0.401		
SC	69.187	66.927	69.617	68.833	70.110	68.935		
50	±0.989	± 0.488	±0.016	±0.652	±0.185	±0.403		
Overall (Ration)	69.432 ^{ac}	67.455 ^b	68.797 ^{ad}	67.863 ^{bd}	70.428 ^c	68.795		
Overall (Katioli)	±0.477	±0.337	±0.634	±0.576	±0.245	± 0.280		

Table 10: Mean Intake (Mean ± SE) and Digestibility Coefficient of Nitrogen Free Extract (NFE) in Rabbits
During Metabolism Trial

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

The mean intake of NFE (g/animal/day) during metabolism trial was comparable to the values reported by Kumar (1995) in White Giant breed (WG) and SC rabbits and Saikia (1998) in NZW rabbits. The digestibility co-efficient of NFE

(DCNFE) during metabolism trial were comparable with the observed values (61.20 to 80.70) by Lall *et al.* (1985), (56.80 to 70.61) by Kumar (1995) and (62.61 to 80.26) by Saikia (1998). However, Alicata *et al.* (1992) observed no significant difference in NFE digestibility in NZW rabbits fed diets containing 0, 10 and 20 per cent chickpeas. Rabbits on diets containing alkali treated, water washed neem seed meal and GNC were similar in all the experimental groups (Bhosale, 1994). Yadav *et al.* (1995) reported a higher digestibility percent of NFE in pigs along with the incorporation of increased level of sweet potato tubers (75.31 to 92.46% in Expt. 1 and 77.46 to 86.86% in Expt. 2) in the rations. In the present study the significantly (P<0.01) higher digestibility of NFE of Ration 5 could be due to lower fibre content since the percentage of wheat bran and rice bran was less as compared to other rations.

Intake and Digestibility Co-Efficient of Total Carbohydrate (TCHO)

There were no significant differences among the breed and breed \times ration in respect of intake, voided in faeces, digested and digestibility co-efficient of total carbohydrate, respectively but, highly significant (P<0.01) differences was observed among the rations in respect of all the above mentioned traits. There was an increasing trend of total carbohydrate intake, digested and digestibility co-efficient along with the increasing level of sweet potato percentage in the rations (Table 11).

A 44		Omenall (Dread)							
Attribute	1	2	3	4	5	Overall (Breed)			
TCHO Intake (g/animal/day)									
NZ	61.647	62.537	63.820	62.880	61.877	62.552			
INZ.	± 0.628	±0.436	±0.174	± 0.070	±0.113	±0.247			
SC	61.050	61.307	64.287	62.890	61.853	62.277			
SC	±0.583	±0.281	±0.247	±0.073	±0.110	±0.339			
Overall (Ration)	61.348 ^a	61.922 ^a	64.053 ^b	62.885 ^c	61.865 ^a	62.415			
Overall (Katioli)	± 0.406	±0.360	±0.171	± 0.046	± 0.071	±0.207			
TCHO Voided in	Faeces (g	g/animal/d	ay)						
NZ	16.103	18.640	17.443	15.713	18.657	17.311			
INZ.	± 0.098	±0.268	±0.168	±0.303	±0.283	±0.342			
SC	16.213	18.013	17.733	16.610	18.490	17.412			
sc	±0.103	±0.021	±0.206	± 0.485	±0.274	±0.252			
Overall (Ration)	16.158 ^a	18.327 ^b	17.588 ^c	16.162 ^a	18.573 ^b	17.362			
Overall (Katioli)	± 0.068	±0.185	±0.135	±0.325	± 0.180	±0.209			
TCHO Digested	(g/animal	/day)							
NZ	45.543	43.897	46.377	47.167	43.220	45.240			
INZ	± 0.707	±0.347	±0.197	± 0.282	±0.185	±0.423			
SC	44.837	43.293	46.553	46.280	43.363	44.865			
sc	± 0.685	±0.301	±0.143	± 0.552	±0.384	± 0.408			
Overall (Ration)	45.190 ^a	43.595 ^b	46.465 ^c	46.723 ^c	43.292 ^b	45.053			
Overall (Katioli)	± 0.468	±0.246	±0.116	±0.341	±0.193	±0.291			
Digestibility Co-	Efficient o	of TCHO ((%)						
NZ	73.870	70.193	72.670	75.010	69.850	72.319			
	± 0.408	±0.347	±0.248	±0.472	± 0.408	±0.559			
SC	73.437	70.617	72.413	73.587	70.103	72.031			
30	±0.420	±0.170	±0.245	± 0.800	±0.496	±0.424			
Overall (Ration)	73.653 ^a	70.405 ^b	72.542 ^c	74.298 ^a	69.977 ^b	72.175			
	±0.279	±0.197	±0.166	±0.523	±0.293	±0.345			

 Table 11: Mean Intake (Mean ± SE) and Digestibility Co-Efficient of Total Carbohydrate (TCHO) in Rabbits

 During Metabolism Trial

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

The intake of total carbohydrate was significantly (P<0.01) higher in Ration 3 and Ration 4 groups than the control (Ration 1) group and there was no significant difference among Ration 1, 2 and 5. The digestibility co-efficient of total carbohydrate differed significantly (P<0.01) due to dietary variation. Carbohydrates generally make up between 80 to 90 per cent of the dry weight of sweet potato roots; however, the uncooked starch of the sweet potatoes is very resistant to the hydrolysis by amylase. When cooked, their susceptibility to the enzymes increases. Thus, after cooking the easily hydrolysable starch fraction of sweet potato increases from 4 to 55 per cent (Cerning-Beroard and Le Dividich, 1976). The structure of sweet potato starch does not differ from that of cereals and mandioca (Szylit *et al.*, 1978). Cooking sweet potato is therefore necessary for starch digestibility (Dominguez, 1991). Yoshida and Morimoto (1958) reported that the carbohydrate fraction in sweet potato to be about 90 per cent digestible in chicks. The significantly (P<0.01) higher digestibility of total carbohydrate in the Ration 3 and 4 might be due to higher level of NFE intake from these rations and thus higher amount of soluble carbohydrate (boiled sweet potato) ingested than the other groups.

Intake, Digestibility and Metabolisability of Gross Energy (GE) Of Feed

There were no significant differences among the breed in respect of GE intake, faecal energy loss, digestible energy (DE), digestibility percent, metabolisable energy (ME) and metabolisability per cent except urinary energy (UE) loss. The UE loss was significantly (P<0.05) higher in SC breed than NZ breed. GE intake, DE, UE loss and ME were significantly differed among the rations. However, there were no significant differences among the FE loss, digestibility per cent and metabolisability percent (Table 12). Ration × breed significantly differed in respect of FE loss, digestibility per cent and metabolisability percent.

Attributo		Overall						
Attribute	1	2	3	4	5	(Breed)		
Ι	II	III	IV	V	VI	VII		
GE Intake (Kcal/animal/day)								
NZ	371.963	381.417	377.313	366.410	368.340	373.089		
INZ.	± 3.782	± 2.665	± 5.505	± 0.559	± 3.521	±2.016		
SC	368.350	373.910	382.250	372.023	364.420	372.191		
sc	± 3.522	± 1.709	±3.149	± 3.876	± 6.254	±2.198		
Overall	370.157 ^{ab}	377.663 ^{ac}	379.782 ^c	369.217 ^b	366.380 ^b	372.640		
(Ration)	± 2.449	± 2.196	±3.043	2.154	± 3.328	± 1.468		
Faecal Energy		mal/day)						
NZ	84.657 ^{ab}	85.153 ^a	84.800^{ab}	82.413 ^b	86.893 ^a	84.783		
INZ.	±0.751	± 1.178	±0.230	± 0.554	±0.176	±0.461		
SC	84.977 ^a	84.440^{a}	87.810 ^b	85.667 ^{ab}	80.203 ^c	84.619		
sc	±0.967	± 1.484	±1.229	±0.757	±0.927	±0.784		
Overall	84.817	84.797	86.305	84.040	83.548	84.701		
(Ration)	± 0.552	± 0.862	± 0.875	± 0.840	± 1.554	± 0.448		
Digestible Ener	gy ((Kcal/anin	nal/day)						
NZ	287.440	296.263	292.513	283.997	281.447	288.332		
INZ.	± 4.400	± 1.496	± 5.463	± 0.651	± 3.568	± 1.988		
SC	283.373	289.470	294.440	286.690	284.217	287.638		
sc	± 3.208	± 2.990	±4.250	± 4.170	± 5.372	± 1.880		
Overall	285.407 ^{ac}	292.867 ^{ab}	293.477 ^b	285.343 ^{ac}	282.832 ^c	287.985		
(Ration)	± 2.600	±2.132	±3.125	± 1.981	± 2.950	±1.346		
Digestibility (%								
NZ	77.270^{ab}	77.680 ^a	77.513 ^a	77.507 ^a	76.407 ^b	77.275		
	±0.400	±0.153	±0.316	±0.145	±0.242	±0.158		

 Table 12: Mean Intake, Digestibility and Metabolisability of Gross Energy (GE) of Feed in Rabbits

 During Metabolism Trial

SC	76.930 ^a	77.413 ^{ab}	77.020 ^a	77.057 ^{ab}	77.990 ^b	77.282				
sc	±0.254	0.482	±0.494	0.322	±0.152	±0.173				
Overall	77.100	77.547	77.267	77.282	77.198	77.279				
(Ration)	±0.225	±0.234	±0.284	± 0.188	± 0.376	±0.115				
Urinary Energy	Urinary Energy Loss ((Kcal/animal/day)									
N7	15.217	14.923	16.120	16.913	16.973	16.029 ^A				
NZ	±0.222	±0.072	±0.074	±0.103	±0.073	±2.230				
SC	15.780	14.787	16.287	17.260	17.123	16.247 ^B				
SC	±0.040	±0.094	±0.227	±0.206	± 0.090	±0.250				
Overall	15.498 ^a	14.855 ^b	16.203 ^c	17.087 ^d	17.048 ^d	16.138				
(Ration)	±0.161	±0.061	±0.113	±0.129	±0.061	±0.168				
Metabolisable l	Energy ((Kcal/	animal/day)								
N/7	272.223	281.340	276.393	267.083	264.473	272.303				
NZ	±4.341	± 1.502	±5.533	±0.649	± 3.620	±2.130				
SC	267.593	274.683	278.153	269.430	267.093	271.391				
SC	±3.168	± 2.965	± 4.460	± 3.975	± 5.422	±1.932				
Overall	269.908 ^{ac}	278.012 ^b	277.273 ^{ab}	268.257 ^c	265.783 ^c	271.847				
(Ration)	±2.617	±2.105	±3.202	1.877	± 2.974	±1.415				
Metabolisabilit	y (%)									
N7	73.177 ^a	73.763 ^a	73.240 ^a	72.890 ^a	71.797 ^b	72.973				
NZ	0.428	±0.136	±0.397	±0.124	±0.303	±0.209				
SC	72.643	73.457	72.760	72.417	73.283	72.912				
SC	±0.266	± 0.484	± 0.586	±0.320	±0.247	±0.185				
Overall	72.910	73.610	73.000	72.653	72.540	72.943				
(Ration)	±0.255	±0.235	±0.334	± 0.186	±0.376	±0.137				

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P < 0.05)

Dietary variation significantly (P<0.01) influenced the mean intake of gross energy (Kcal/animal/day) during metabolism trial. The reason of the variation observed in GE intake during metabolism trial might be the variation observed in DM intake by rabbits of different groups since voluntary feed intake is regulated according to energy need (Cheeke, 1987).Kumar (1995) observed significant differences in GE intake (Kcal/day) among the groups of rabbits receiving diets containing 0, 5, 10 and 20 per cent neem seed kernel cake. The observed values of GE intake during the metabolism trial were comparable to the values reported by Kumar (1995) and Saikia (1998). Fetuga and Oluyemi (1976) obtained a co-efficient of metabolisable energy of 90.9 or 87.2 in diets where the sweet potato tuber replaced 25 or 40 per cent of the glucose in a basal diet in chicks. Gerpacio et al. (1978) also observed the digestibility or availability of energy by replacing 0, 50, 75 and 100 per cent of corn in the ration of chicks up to 6 weeks of age and observed the metabolisable energy per cent 82.6, 64.3, 70.0 and 73.7, respectively and also opined that the presence of non-identified factors which inhibit the digestive and metabolic processes in sweet potato based rations. These factors caused the low energy values even when the rations contained adequate and high quality proteins. Oyenuga and Fetuga (1975) reported that cooking did not significantly affect the utilization of energy, but increased the digestibility of the nutrients. Rose and White (1980) observed a very high value (15.8 MJ/kg DM) digestible energy in pigs when they received low quantities of raw sweet potatoes and opined that a depression in apparent digestibility might be expected as the level of intake increased. Tomita et al. (1985) evaluated ensiled sweet potato and found high digestible energy value and might be due to the high gross energy value of the sweet potato silage. DE of sweet potato tuber was reported by various workers viz. Canope et al., 1977 (14.2 MJ in Raw and 14.5 MJ in cooked /kg DM), Rose and White, 1980 (15.8 MJ/kg DM), Tomita et al., 1985 (16.3 MJ/kg DM) and Noblet et al., 1990 (15.3 MJ/kg DM). Dominguez (1991) opined that the DE of cooked sweet potato diets was high (14.0 to 15.8 MJ/ kg DM). Takahashi et al. (1968) reported that the DE of sweet potato foliage is 4.1 MJ/kg DM and Ravi *et al.* (2001) observed the GE of sweet potato vines 3644 Kcal/kg. French (1955) observed the metabolisability percent of fresh sweet potato tuber 3.24, whereas, Nenmark (1970) reported 2.71 per cent in sheep. There was no significant difference due to ration in digestibility and metabolisability percent of gross energy. The present findings are in corroboration with the findings of previous workers.

Nitrogen Balance in Rabbits

Although no significant (P<0.05) difference was observed among the breed and breed \times ration in respect of nitrogen intake, nitrogen loss and nitrogen retention, however, significant (P<0.01) differences were observed in respect of all the above mentioned traits due to rations. Nitrogen intake was significantly (P<0.01) reduced along with the increased level of sweet potato in the diet in comparison to the control ration (Ration 1). The similar trend was followed in nitrogen loss and nitrogen retention also (Table 13).

Attributo				Overall (Breed)				
Attribute	1	2	3	4	5	Overall (Breed)		
Ι	II	III	IV	V	VI	VII		
Nitrogen Intake (g/animal/day)								
NZ	2.437	2.347	2.240	2.160	2.133	2.263		
INZ	±0.014	±0.009	±0.015	± 0.006	± 0.009	±0.031		
SC	2.447	2.340	2.233	2.167	2.130	2.263		
30	± 0.009	±0.015	±0.012	± 0.009	±0.011	±0.031		
Overall (Ration)	2.442 ^a	2.343 ^b	2.237 ^c	2.163 ^d	2.132 ^e	2.263		
Overall (Katioli)	± 0.008	± 0.008	± 0.009	± 0.005	± 0.006	±0.022		
Faecal Nitrogen		nimal/day)						
NZ	0.827	0.827	0.757	0.727	0.713	0.770		
INZ	±0.014	±0.014	± 0.018	±0.019	± 0.009	±0.014		
SC	0.850	0.837	0.767	0.743	0.697	0.779		
30	±0.011	±0.009	±0.012	± 0.018	± 0.009	±0.016		
Overall (Ration)	0.838 ^a	0.832 ^a	0.762 ^b	0.735 ^b	0.705 ^c	0.774		
	±0.010	± 0.008	±0.010	±0.012	± 0.007	±0.010		
Urinary Nitroger	n Loss (g/a	animal/da						
NZ	0.337	0.380	0.367	0.463	0.467	0.403		
INZ	± 0.007	± 0.006	± 0.003	± 0.009	± 0.009	±0.014		
SC	0.323	0.367	0.357	0.433	0.480	0.392		
30	± 0.018	± 0.007	± 0.009	± 0.009	±0.011	±0.016		
Overall (Ration)	0.330 ^a	0.373 ^b	0.362 ^b	0.448°	0.473 ^d	0.397		
	± 0.009	± 0.005	± 0.005	± 0.009	± 0.007	±0.010		
Total Nitrogen L	oss (g/ani	mal/day)						
NZ	1.163	1.207	1.123	1.190	1.180	1.173		
INZ.	± 0.009	±0.019	±0.019	± 0.011	± 0.000	±0.009		
SC	1.173	1.203	1.123	1.177	1.177	1.171		
30	± 0.029	±0.012	± 0.007	± 0.009	±0.012	±0.009		
Overall (Ration)	1.168 ^a	1.205 ^b	1.123 ^c	1.183 ^{ab}	1.178 ^{ab}	1.172		
Overall (Katioli)	±0.014	±0.010	± 0.009	± 0.007	± 0.005	±0.006		
Net Nitrogen Ret	tention (g/	/animal/da						
NZ	1.273	1.140	1.117	0.970	0.953	1.091		
NZ	±0.013	±0.023	± 0.007	± 0.010	±0.009	±0.032		
SC	1.273	1.137	1.110	0.990	0.953	1.093		
50	±0.023	±0.014	±0.015	±0.006	±0.022	±0.031		
Overall (Ration)	1.273 ^a	1.138 ^b	1.113 ^b	0.980 ^c	0.953 ^c	1.092		
	±0.012	±0.012	± 0.008	± 0.007	±0.010	±0.022		
Nitrogen Retenti	on as Pere	cent of Int	ake					

Table 13: Nitrogen Balance in Rabbits during Metabolism Trial (Mean ± SE)

NZ	52.253	48.573	49.857	44.907	44.687	48.055
INZ.	±0.347	± 0.877	±0.516	± 0.479	±0.229	± 0.804
SC	52.047	48.573	49.700	45.693	44.750	48.153
SC	± 1.071	± 0.470	± 0.458	± 0.272	± 0.810	±0.756
Overall (Ration)	52.150 ^a	48.573 ^b	49.778 ^b	45.300 ^c	44.718 ^c	48.104
Overall (Kation)	± 0.506	± 0.445	±0.310	± 0.302	±0.377	±0.542
Nitrogen Retenti	on as Pero	cent of Dig	gested			
NZ	79.083	74.987	75.280	67.677	67.140	72.833
INZ	±0.437	± 0.575	±0.149	±0.433	±0.240	±1.255
SC	79.740	75.603	75.690	69.560	66.467	73.418
30	±1.167	± 0.559	±0.267	± 0.406	±1.033	±1.302
Oreganill (Detion)	79.412 ^a	75.295 ^b	75.485 ^b	68.618 ^c	66.818 ^d	73.126
Overall (Ration)	±0.576	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	±0.496	±0.890		

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

The mean intake of nitrogen (g/animal/day) during metabolism trial was comparable among the groups and was within the range of reported values 1.89 to 2.62 g/day (Kumar, 1995) and 2.10 to 2.44 g/day (Saikia, 1998), but lower than the values reported by Prasad *et al.* 1999 (3.30 to 4.46 g/day). The net retention of nitrogen during metabolism trial was comparable to the values reported by Kumar (1995), Dutta *et al.* (1997) and Saikia (1998). The nitrogen retention as percentage of intake as well as digested were comparable to the values reported by Martinez Pascual and Fernandez Carmona (1980) and Saikia (1998) in NZW rabbits. However, Gupta *et al.* (2001) observed negative balance of nitrogen in adult rabbits when Job's tears (*Coix lachryma*) and broom grass (*Thysanolaena agrostis*) were given as sole feeding. The digestibility of sweet potato tuber (%) in various forms in respect of nitrogen in pigs was recorded by various workers. Canope *et al.* (1977) and Rose and White (1980) found that digestibility of nitrogen in raw sweet potato tuber in pigs to be 27.6 and 49.8 per cent, respectively. However, Canope *et al.* (1977) observed in cooked sweet potato tuber 52.8 percent in pigs. Tomita *et al.* (1985) reported 32 per cent digestibility of sweet potato tuber in silage in pigs and Noblet *et al.* (1990) observed 52.3 per cent in chips. Dominguez *et al.* (1991) opined that nitrogen digestibility is somewhat low because of the poor digestibility of sweet potato protein even when cooked and reported the value 76.0 per cent in cooked sweet potato

Yadav *et al.* (1995) in an experiment in pigs observed a decreased trend of nitrogen balance when the incorporation of sweet potato tuber was increased in the diets and the values were 45.08 ± 3.54 per cent in control, 38.64 ± 0.69 per cent in 50% and 12.85 ± 1.00 per cent in 100% sweet potato based diets, respectively in pigs. The present findings in respect of nitrogen intake, retention and nitrogen balance as percent of intake and digested were in good agreement with the above workers and the declined trend of nitrogen balance in the present experiment might be due to incorporation of sweet potato tuber in the diet of rabbits.

Energy Balance in Rabbits

There were no significant differences among the breed and rations in respect of total GE loss but, there was highly significant (P<0.01) difference in breed x Ration. In respect of energy retention, the net retention and as percent of digested were significantly differed among the Rations, whereas percent of intake did not differed significantly. The net retention of GE was significantly higher (P<0.05) in Ration 2 and Ration 3 groups than the other three groups (Table 14).

Attribute	1	2	3	4	5	Overall (Breed)			
Total Gross Energy Loss (Faecal + Urinary) (Kcal/day)									
NZ	99.873 ^a	100.077 ^a	100.920^{a}	99.327 ^a	103.867 ^b	100.813			
INZ	±0.708	± 1.188	±0.206	±0.466	±0.241	±0.499			
SC	100.757 ^{ab}	99.227 ^{ac}	104.097 ^b	102.927 ^b	97.327 ^c	100.867			
sc	±0.977	± 1.428	± 1.456	±0.711	±0.909	±0.782			
Overall (Ration)	100.315	99.652	102.508	101.127	100.597	100.840			
Overall (Kation)	±0.574	± 0.852	± 0.968	±0.890	±1.521	±0.456			
Net Energy Reter	ntion (Kcal/								
NZ	272.090	281.340	276.393	267.083	264.473	272.276			
INZ	±4.473	± 1.502	± 5.533	±0.649	± 3.620	±2.137			
SC	267.593	274.683	278.153	269.107	267.093	271.326			
sc	±3.168	± 2.965	± 4.460	±4.147	± 5.422	±1.947			
Overall (Ration)	269.842 ^{ac}	278.012 ^b	277.273 ^{bc}	268.095 ^a	265.783 ^a	271.801			
Overall (Katioli)	± 2.650	± 2.105	±3.202	±1.931	± 2.974	±1.423			
Net Energy Reter	ntion as Per	Cent of In	take						
NZ	73.140	73.763	73.240	72.890	71.797	72.966			
INZ	±0.465	±0.136	±0.397	±0.124	±0.303	±0.211			
SC	72.643	73.457	72.760	72.327	73.283	72.894			
sc	±0.266	± 0.484	± 0.586	±0.387	±0.247	±0.192			
Overall (Ration)	72.892	73.610	73.000	72.608	72.540	72.930			
Overall (Katioli)	±0.264	±0.235	±0.334	±0.221	±0.376	±0.140			
Net Energy Reter	ntion as Per	Cent of Di	igested						
NZ	94.653	94.963	94.483	94.043	93.970	94.423			
112	±0.130	±0.036	±0.124	±0.036	± 0.095	±0.106			
SC	94.430	94.890	94.463	93.867	93.957	94.321			
30	±0.048	±0.057	±0.155	±0.150	±0.136	±0.109			
Overall (Ration)	94.542 ^a	94.927 ^b	94.473 ^a	93.955°	93.963 ^c	94.372			
Overall (Kauoli)	± 0.080	±0.034	± 0.088	±0.079	±0.074	±0.076			

Table 14: Energy Balance in Rabbits during Metabolism Trial (Mean ±SE)

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly.

The net retention of GE intake (Kcal/day) and retentions as percentage of intake as well as digested during metabolism trial were comparable to the values reported by Kumar (1995) and Saikia (1998) in rabbits fed diets containing different level of neem seed kernel cake and ajar seed cake, respectively. The net retention of energy was significantly (P<0.05) higher in the Ration 2 and 3 groups and there were no significant differences among Ration 1 (Control), 4 and 5. Wu (1980) observed that the net energy of sweet potato (8.5 MJ/kg DM) was only 79 per cent of that of corn, whereas, Noblet *et al.* (1990) found that net energy of sweet potato and corn were equivalent (12.3 MJ/kg DM) in chicks. Kumar (1995) and Saikia (1998) observed the similar trend of energy retention as percentage of intake as well as digested in rabbits. The present findings are in good agreement with the finding of the above workers.

Intake and Balance of Calcium in Rabbits

In respect of intake, total calcium loss and calcium retention (net retention and as percent of intake) the rations differed significantly, but there were no significant difference among the breed in respect of all the traits. Only urinary calcium loss differed significantly among the breed \times ration. Intake of calcium was significantly (P<0.01) higher in sweet potato based rations than the control group (Ration 1). The total calcium loss was maximum in Ration 2 group and there were no significant differences among the other four groups (Table 15). Net calcium retention was significantly (P<0.01) higher in all the four groups that consumed sweet potato based rations than the control group. As per cent of intake in

Ration 2 group the retention was maximum (69.72 \pm 0.42) and there were no significant differences among the other groups.

Ration Overal									
Attribute	1	2	3	4	5	(Breed)			
I	П		IV	V	VI	VII			
Intake of Calci			1	, v	V L				
	1.357	1.447	1.400	1.383	1.410	1.399			
NZ	±0.013	±0.009	±0.020	±0.003	±0.011	±0.009			
	1.343	1.417	1.417	1.403	1.397	1.395			
SC	±0.014	±0.009	±0.012	±0.013	±0.024	±0.009			
Overall	1.350 ^a	1.432 ^b	1.408 ^{bc}	1.393°	1.403 ^{bc}	1.397			
(Ration)	±0.009	±0.009	±0.011	±0.008	±0.012	±0.006			
Faecal Calciun									
	0.153	0.153	0.160	0.153	0.157	0.155			
NZ	±0.003	±0.003	±0.006	±0.003	±0.003	±0.002			
	0.157	0.153	0.167	0.157	0.160	0.159			
SC	±0.003	±0.003	±0.003	±0.003	±0.006	±0.002			
Overall	0.155	0.153	0.163	0.155	0.158	0.157			
(Ration)	±0.002	±0.002	±0.003	±0.002	±0.003	±0.001			
Urinary Calciu	m Loss (g/anir	nal/day)		•					
	0.290 ^{ab}	0.277 ^a	0.300 ^b	0.293 ^{ab}	0.280^{a}	0.288			
NZ	±0.006	±0.003	±0.006	±0.009	±0.006	±0.003			
80	0.290 ^{ab}	0.283 ^{ac}	0.280^{a}	0.303 ^b	0.300 ^{bc}	0.291			
SC	±0.009	±0.009	±0.006	±0.003	±0.006	±0.003			
Overall	0.290	0.280	0.290	0.298	0.290	0.290			
(Ration)	± 0.004	±0.004	± 0.006	±0.005	± 0.006	±0.002			
Total Calcium	Loss (g/animal	/day)							
NZ	0.443	0.430	0.460	0.447	0.437	0.443			
INZ	±0.003	± 0.000	± 0.006	±0.007	±0.009	±0.003			
SC	0.447	0.437	0.447	0.460	0.460	0.450			
30	±0.003	±0.009	±0.003	±0.006	± 0.006	±0.003			
Overall	0.445 ^{ab}	0.433 ^a	0.453 ^b	0.453 ^b	0.448^{b}	0.447			
(Ration)	± 0.002	± 0.004	± 0.004	± 0.005	± 0.007	± 0.002			
Net Calcium R	etention (g/ani	mal/day)							
NZ	0.913	1.017	0.940	0.937	0.973	0.956			
INZ.	±0.012	±0.009	±0.025	±0.009	± 0.020	±0.011			
SC	0.897	0.980	0.970	0.943	0.937	0.945			
	±0.018	±0.015	±0.011	±0.009	±0.019	±0.010			
Overall	0.905 ^a	0.998 ^b	0.955°	0.940 ^c	0.955°	0.951			
(Ration)	±0.010	±0.011	±0.014	±0.006	±0.015	± 0.007			
Calcium Reten	1				1	1			
NZ	67.317	70.273	67.120	67.707	69.017	68.287			
112	±0.288	±0.182	±0.842	±0.523	± 0.874	±0.393			
SC	66.737	69.170	68.467	67.220	67.060	67.731			
	±0.591	±0.734	±0.303	±0.210	±0.208	±0.303			
Overall	67.027 ^a	69.722 ^b	67.793 ^a	67.463 ^a	68.038 ^a	68.009			
(Ration)	±0.321	±0.419	± 0.501	±0.274	±0.594	±0.249			

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.01)

Dietary variation influenced significantly (P<0.01) the intake of calcium during metabolism trial, which might be due to the variation in the DM intake by rabbits. Diet did not significantly influence the faecal and urinary calcium loss during the trial; however, total loss was significantly (P<0.05) influenced. The net retention of calcium (g/animal/day) observed during the trial were comparable to the range 0.47 to 1.50 g per day (Singh *et al.*, 1994) in WG and 1.00 to 1.33 g per day (Saikia, 1998) in NZW rabbits. The net retention of calcium were significantly (P<0.01) higher in sweet potato incorporated rations. Numerous negative effects of dietary fibre on calcium balance have been reported (Kelsay *et al.*, 1979; Morris and Ellis, 1980; Oku *et al.*, 1982) indicating that the capacity of dietary polysaccharides to chelates cataions plays a role in mineral utilization. Besides, high dietary fibre reduces the gastrointestinal transit time, which may not permit optimal calcium absorption. Tortuero *et al.* (1989) and Saikia (1998) observed that calcium absorption was significantly lower in the groups given higher level of olive pulp and ajar seed kernel, respectively than in the control group of NZW rabbits. The significantly higher retention of calcium in Ration 2 could be due to higher intake of minerals. However, in other experimental groups no significant difference was observed.

Intake and Balance of Phosphorus in Rabbits

Phosphorus intake, urinary loss, total loss and net retention were significantly differed among the rations; however, there were no significant differences in faecal phosphorus loss and phosphorus retention as percent of intake (Table 16). There were no significant differences among the breeds in all the above mentioned traits except urinary phosphorus loss. The NZ breed significantly (P<0.05) lost more phosphorus than the SC breed. The net retention as percent of intake was significantly (P<0.05) differed among ration \times breed. The intake of phosphorus, urinary phosphorus loss, total phosphorus loss and phosphorus retention was significantly higher in sweet potato based ration groups than the control group (Ration 1).

Attributo		Overall (Breed)							
Attribute	1	2	3	4	5	Overall (breed)			
Ι	II	III	IV	V	VI	VII			
Intake of Phosph	Intake of Phosphorus (g/animal/day)								
NZ	0.543	0.620	0.613	0.580	0.570	0.585			
INZ	± 0.007	± 0.006	±0.009	± 0.000	± 0.006	±0.008			
SC	0.540	0.600	0.623	0.590	0.567	0.584			
SC	± 0.006	±0.006	±0.003	±0.006	±0.009	±0.008			
Overall (Betion)	0.542 ^a	0.610 ^{bc}	0.618 ^c	0.585 ^d	0.568 ^e	0.585			
Overall (Ration)	± 0.004	±0.006	±0.005	±0.003	±0.005	±0.005			
Faecal Phosphor	us Loss (g	/animal/da	ay)						
NZ	0.090	0.100	0.087	0.093	0.087	0.001			
INZ	± 0.006	±0.006	±0.003	±0.003	±0.003	±0.002			
SC	0.083	0.093	0.093	0.097	0.087	0.091			
sc	±0.003	±0.003	±0.003	±0.003	±0.003	±0.002			
Overall (Detion)	0.087	0.097	0.090	0.095	0.087	0.091			
Overall (Ration)	±0.003	±0.003	±0.003	± 0.002	±0.002	±0.001			
Urinary Phospho	orus Loss	(g/animal/	day)						
NZ	0.072	0.078	0.072	0.073	0.073	0.073 ^A			
INZ	±0.003	± 0.002	±0.003	±0.004	±0.004	±0.001			
SC	0.067	0.082	0.086	0.082	0.075	0.078^{B}			
sc	± 0.004	± 0.004	±0.002	±0.003	±0.003	±0.002			
Organith (Detion)	0.069 ^a	0.080^{b}	0.079^{b}	0.077 ^b	0.074^{ab}	0.076			
Overall (Ration)	±0.003	± 0.002	±0.004	±0.003	±0.002	±0.001			
Total Phosphoru	s Loss (g/a	animal/day	7)						
NZ	0.167	0.180	0.163	0.170	0.163	0.169			
	±0.009	±0.006	±0.007	±0.006	±0.003	±0.003			
SC	0.153	0.177	0.183	0.183	0.163	0.172			
30	± 0.007	±0.003	±0.003	±0.003	±0.007	±0.004			

Table 16: Intake and Balance of Phosphorus in Rabbits during Metabolism Trial (Mean ± SE)

Overall (Ration)	0.160 ^a	0.178^{b}	0.173 ^{bc}	0.177 ^b	0.163 ^{ac}	0.170
	± 0.006	±0.003	±0.006	± 0.004	±0.003	±0.002
Net Phosphorus Retention (g/animal/day)						
NZ	0.380	0.440	0.460	0.417	0.410	0.421
	± 0.006	±0.001	±0.006	± 0.007	±0.010	± 0.008
SC	0.393	0.427	0.440	0.407	0.403	0.414
	± 0.007	±0.009	± 0.000	± 0.007	±0.003	±0.005
Overall (Ration)	0.387 ^a	0.433 ^b	0.450 ^c	0.412 ^d	0.407 ^d	0.418
	± 0.005	± 0.005	±0.005	± 0.005	± 0.005	±0.005
Net Phosphorus Retention as Percent of Intake						
NZ	69.667 ^a	70.980^{a}	74.197 ^{bc}	71.263 ^a	72.083 ^{ac}	71.638
	±1.577	±0.661	±0.853	± 1.033	± 1.012	±0.569
SC	72.213 ^a	70.803 ^{ab}	70.593 ^{ab}	69.480 ^b	71.430 ^{ab}	70.904
	± 0.978	±0.662	±0.377	± 0.682	±0.766	±0.365
Overall (Ration)	70.940	70.892	72.395	70.372	71.757	71.271
	± 1.006	±0.420	±0.907	± 0.682	±0.586	±0.339

N.B. Sub-class averages with at least one superscripts in common (lower case along the row and upper case along the column) do not differ significantly. (P<0.05)

Incorporation of sweet potato in the diet of rabbits significantly (P<0.01) influenced the intake of phosphorus during metabolism trial, which could be due to the variation observed in DM intake by the rabbits. Statistically no significant difference was observed among the groups during metabolism trial in respect of faecal phosphorus loss, however, there were significant (P<0.05) differences in urinary phosphorus and total phosphorus loss and net phosphorus retention. Thus, it is clear that there was no influence of sweet potato based diet on phosphorus utilization.

CONCLUSIONS

Use of sweet potato as replacement of maize in broiler rabbit ration and successful digestion cum metabolism trial indicates that sweet potato is a very good source of tuber crop which could be suitably incorporated in rabbit ration without adverse effect. It gives a positive balance of N, energy, Ca and P during metabolism trial. Hence the growth of animal could be achieved up to the desired level. The cost of maize grain is very high thus increases feed cost. Inclusion of sweet potato in animal diet will reduce the feed cost and could be supplemented as energy source.

REFERENCES

- 1. A.O.A.C. (1980). Official methods of analysis, 13th edn., Association of Official Analytical Chemists. Washington, D.C. USA.
- Abu, O.A. (1997). Biochemical characterization and utilization of processed sweet potato (Ipomoea batatas) for rabbit feeding. Ph.D. Thesis submitted to the Department of Animal Science, University of Ibadan, Ibadan, Nigeria, pp. 248.
- 3. Abu, O.A.; Tewe, O.O. and Bakare, J. (1999). Performance, nutrient digestibility and carcass characteristics of rabbit fed sweet potato based diets. Inter. J. Anim. Sci. **14**(2) : 197-201.
- 4. Aderibigbe, A.O.; Tor-Agbidye, Y.; Cheeke, P.R. and Patton, N.M. (1990). Evaluation of almond hulls as a feedstuff for rabbits. J. Applied Rabbit Res. **13** (3-4): 110-113.
- Alicata, M.L.; Bonanno, A.; Alabiso, M.; Portolano, B. and Stimolo, M.C. (1992). Further trials on the use of chickpeas in growing rabbit feeding. J. Applied Rabbit Res. 15(6): 1025-1032.

135

- 6. Anonymous (2002). Dainik Sambad. April 2, 2002, Tuesday, pp.3.
- 7. Ayer, A.C.; Cheeke, P.R. and Patton, N.M. (1992). Effect of weaning rabbits of black locust bark, oat sawdust, red alder bark and red alder sawdust in the diet. J. Applied Rabbit Res. **15**(6): 1166-1174.
- Balogun, T.F. and Etukude, U.W. (1991). Undecorticated, full fat sunflower seeds in diet of rabbits. J. Applied Rabbit Res. 14(2): 101-104.
- 9. Bhosale, D.T. (1994). Effect of dietary fibre levels on performance of fryer rabbits fed processed neem seed kernel meal. M.V.Sc. thesis, I.V.R.I., Izatnagar, India.
- 10. Biobaku, W.O. and Ekpenyong, T.F. (1991). Effect of feeding graded levels of water lettuce and water hyacinth on the growth rabbits. J. Applied Rabbit Res. **14** (2): 98-100.
- 11. Bora, A. (1995). Effect of dietary fibre levels on weight gain, feed conversion efficiency and blood biochemical profiles in rabbits. Ph.D. Thesis, Assam Agril. Univ., Khanapara, Guwahati, Assam.
- 12. Bora, A.; Baruah, R.N.; Baruah, K.K. and Bora, R.K. (1996). Effect of concentrate to roughage ratio on growth, feed conversion efficiency and nutrient utilization in rabbit. Indian Vet. J. **73**(12): 1239-1242.
- Bora, J.R. (1999). Growth and carcass characteristics of crossbred pigs under unconventional feeding regimes. Ph.D. thesis, Assam Argil. Univ., Khanapara, pp. 194.
- 14. Brody, S. (1964). Bioenergetic and growth. Hafner, New York, USA.
- 15. Canope, J.; Le Dividich, J.; Hed Reville, F. and Deposis, F. (1977). Influence d'un traitement technologique sur l'efficacite alimentaire des principaux produits amylaces tropicaux (patata douce et banane) dans l'alimentation du prac. Nouvelles agronomiques des Antilles et de la Guyane. 3 (3/4) 310-322.
- Cerning-Beroard and Le Dividich, J. (1976). Valeur alimentaire de quelques produits amylaces d'origine tropicale. Annales Zootechnique 25 (2) : 155-168.
- 17. Chakrabarti A, Buragohain S. C. and Baruah K. K. 2017. Carcass characteristics of broiler rabbit fed on sweet potato based ration. International J Agril Sci. and Res. 7(1): 347-358.
- 18. Chakrabarti A, Buragohain S. C.,Baruah K. K.and Sarmah B.C. 2017. Effect of sweet potato based ration on physiological and blood profile of broiler rabbit. International J Botany Res. 7(1): 1-18.
- 19. Chakrabarti A, Gupta J. J. and Dey A. 2014. Economics of Rearing Broiler Rabbit in an Organized Farm. Indian Journal of Applied Agriculture Research. 2(1): 9-12.
- 20. Cheeke, P.R. (1987). Rabbit feeding and Nutrition. Academic Press, Harcourt Brace, Jovanovieh, New York.
- 21. DeBlas, J.C.; Fraga, M.J.; Rodriguez, J.M. and Mendez, J. (1984). The nutritive value of feeds for growing fattening rabbits. 2. Protein evaluation. J. Appl. Rabbit. Res. 7: 97.
- DeBlas, J.C.; Santoma, G.; Carabano, R. and Fraga, M.J. (1986). Fibre and starch levels in fattening rabbits diets. J. Anim. Sci. 63(6): 1897-1904.
- 23. Deshmukh, S.N. and Pathak, N.N. (1991). Effect of different dietary protein and energy levels on growth

performance and nutrient utilization in New Zealand White rabbits. J. Appl. Rabbit Res. 14: 18-24.

- 24. Dominguez et al., (1991) cited by Machin, D. and Nyvold, S. (1992). Roots, tubers, plantains and bananas in animal feeding. F.A.O., Rome.
- 25. Dutta, M.; Talukdar, R.P.; Das, P.C. and Chakravarty, B.N. (1997). Growth response and nutrient utilization of rabbits on different levels of doob grass. Indian J. Anim. Nutr. **14**(3) : 176-179.
- 26. El-Baki, S.M.A.; Sonobol, S.M.; El-Gendy, K.M. and Zaky, A.A. (1992). Leaf protein concentrate (LPC) from cassava and fodder beet as a protein source for rabbits. Egyptian J. Rabbit Sci. **2**(2) : 123-133.
- 27. El-Sayaad, G.A.E.; Luick, B.R. and Cheeke, P.R. (1992). Preliminary evaluation of seed screening of Orchard grass as a feedstuff for rabbits. Egyptian J. Rabbit Sci. 2 (1): 73-80.
- 28. FAO (Food and Agriculture Organization of the United Nations)(1981). FAO expert consultation on rural poultry and Rabbit Production, Rome.
- 29. Fetuga, B.L. and Oluyemi, J.A. (1976). The metabolizable energy of some tropical tuber meals for chicks. Poult. Sci. **55**: 868-873.
- Fraga, M.J.; Barreno, C.; Carasono, R.; Mendez, J. and De Blas, J.C. (1984). Anabs de Institute Nacional de Investigaciones Agrarias, 21: 91.
- 31. French, M.H. (1955). East African Agril. J. 21: 18.
- Gerpacio, A.L.; Pascual, F.Sd.; Querubin, L.J.; Vergel de Dios, A.F. and Mercado, C.I. (1978). Evaluation of tuber meals as energy sources. Sweet potato and cassava based rations for broilers. Philippine Agriculturalist, 61 (9-10): 395-
- Grobner, M.A.; Robinson, K.L.; Patton, N.M. and Cheeke, P.R. (1985). Comparison of Palmino and NZW breeds for commercial rabbit production. J. Appl. Rabbit Res. 8(2): 62.
- 34. Gupta, B.R.; Rao, V.P.; Reddy, C.E.; Satyanarayana, A. and Reddy, P.P. (2001). Diallel analysis of carcass characteristics in broiler rabbits. Indian J. Anim. Res. **35**(1): 40-43.
- Gupta, J.J.; Das, A. and Yadav, B.P.S. (1995). Utilization of Job's tears grain in rabbit ration. Indian J. Anim. Nutr. 12 (4): 201-204.
- Job, T.A.; Oluyemi, J.A. and Entonu, S. (1979). Replacing maize with sweet potato in diets of chicks. Brit. Poult. 20: 515-519.
- Kalita, P. (1998). Effect of various dietary levels of protein and energy on the performance of broiler rabbits. M.V.Sc. thesis, Assam Agril. Univ., Khanapara, pp. 79.
- Kanua, M.N. and Rangat, S.S. (1989). Indigenous Technologies and Recent Advances in Sweet Potato Production, Utilization and Marketing in Papua New Guinea. In: Mackay et al. (1989).
- 39. Kasa, W.; Thwaites, C.J.; Jlanke, X. and Farrell, D.J. (1989). Rice-bran in the diet of rabbits grown at 22°C and 30°C. J. Appl. Rabbit Res. **12** : 75-77.

- Kelsay, J.L.; Behall, K.M. and Prather, E.S. (1979). Effect of fibre from fruit and vegetables on metabolic responses of human subjects. II. Calcium, Magnesium, Iron and Silicon balances. Am. J. Clin. Nutr. 32: 1876-1880.
- 41. Kumar, P.V. (1995). Effect of graded dietary levels of neem (Azadirachta indica) seed kernel cake on the performance of broiler rabbits. M.V.Sc. Thesis, IVRI, Izatnagar, India.
- 42. Lall, D.; Kishan, J.; Negi, S.S.; Goel, G.C. and Callear, J.F.F. (1985). Effect of partial replacement of concentrate by roughages in the diet of Angora rabbits on wool production. Indian J. Anim. Sci. 55(2): 152-154.
- 43. Lebas, F. (1988). Rabbits. Livestock Prod. Sci., 19: 289.
- 44. Lebas, F.; Condert, P.; Rouvier, R. and De Rochambeau, H. (1986). The Rabbit Husbandry, Health and Production. FAO, Rome, Italy.
- 45. Lin, Y.H.; Huang, T.C. and Huang, C. (1988). Quality improvement of sweet potato (Ipomoea batatas L. Lam) roots as feed by ensilage. British J. Nutr. **60** (1): 173-184.
- 46. Maertens, L. and De Groote, G. (1984). Digestibility and digestible energy content of a number of feed stuff for rabbits. Proc. III World Rabbit Cong., Rome. 1: 244-251.
- Marrero, L.J. (1975). Utilizacion del boinato como principal fuente energetica en la alimentacion del cerdo. 1. Estudio sobre la sustitucion del maiz por boniato en las dietas de cerdos en ceba. Centro. Serie Ciencia Animal. II. (1-2): 33-41.
- 48. Martinez and Dominguez (1991). cited by Machin, D. and Nyvold, S. (1992). Roots, tubers, plantains and bananas in animal feeding. F.A.O., Rome.
- Martinez Pascual, J. and Fernandez Carmona, J. (1980). Citrus pulp in diets for fattening rabbits. Anim. Food Sci. Technol. 5: 23-31.
- 50. McDonald, P.; Edwards, R.A. and Greenhalgh, J.F.D. (1973). Animal nutrition. 2nd Edn. Oliver and Boyd, Edinburgh.
- 51. Morris, E.R. and Ellis, R. (1980). Bioavailability to rats of iron and zinc in wheat bran: response to low phytate bran and effect of the phytate/zinc/molar ratio. J. Nutr. **110**: 2000-2010.
- 52. Nenmark, H. (1970). Volcani Institute of Agric. Res. Personal communication.
- 53. Nguyen, Q.S.; Luyen, L.T. and Binh, D.V. (2000). Feeding systems for tropical rabbit production emphasizing root and bananas. Workshop seminar ' Making better use of local feed resources'. SAREC-UAF, Janaury, 2000.
- 54. Noblet, J.; Fortuna, H.; Dupire, C. and Dubois, S. (1990). Valeur nutritionnelle de treize matieres premieres pourle porc en croissance. 1. Teneurs en energie digestible metabolizable et nettle. Consequences du choix du systeme energetique. Journees Recherche Porcine en France. 22: 175-184.
- 55. NRC (1977). Nutrient requirement of rabbits. National Academy of Sciences, National Research Council, Washington, D.C., USA.
- 56. Oku, T.; Konish, F. and Hosoya, B. (1982). Mechanism of inhibitory effect of unavailable carbohydrate on

intestinal calcium absorption. J. Nutr. 112: 410-415.

- 57. Oyenuga, V.A. and Fetuga, B.L. (1975). Chemical composition, digestibility and energy values of some varieties of yam, cassava, sweet potatoes and cocoyams for pigs. Nigerian J. Sci. Univ. Ibadan. **9**(1): 63-110.
- 58. Pote, L.M.; Cheeke, P.R. and Patton, N.M. (1980). Utilization of diets high in alfalfa meal by weanling rabbits. J. Applied Rabbit Res. **3** (4): 5-10.
- 59. Prasad, R.; Sankhyan, S.K. and Karim, S.A. (1999). Growth performance of broiler rabbits maintained on concentrate pellets and roughage in cafetaria system. Indian J. Anim. Sci. **69**(7) : 525-527.
- 60. Prawirodigdo, S.; Cheeke, P.R. and Patton, N.M. (1985). The use of waste cabbage with various levels of cassava root supplementation for feeding weaning rabbits. J. Applied Rabbit Res. **8**(4): 165-166.
- 61. Rao, D.R.; Sunki, G.R.; Johnson, W.M. and Chan, C.P. (1977). Post-natal growth of New Zealand White rabbit. J. Anim. Sci. 44 (6): 1021-1025.
- 62. Ravi, A.; Nedunzhiyan, M.and Rao, K.S. (2001). Effect of supplementation of sweet potato (Ipomoea batatus) vine in the diet of crossbred boars (LWY x Deshi) on the digestibility of nutrients. Cheiron. **30** (5&6): 157-158.
- 63. Ridzwan, B.H.; Fadzli, M.K.; Rozali, M.B.O.; Chin, T.F.; Ibrahim, M.B. and Furidnordin, B.I. (1993). Evaluation of coccoa-pod husks on performance of rabbits. Anim. Feed Sci. Tech. **40** (2-5): 267-272.
- 64. Ridzwan, B.H.; Ghufran, R.; Kaswandi, M.A. and Rozali, M.B.O. (1995). Performance and carcass yield of NZW rabbits fed cocoa-pod husks on performance of rabbits. Anim. Feed Sci.Tech. **40**(2-5): 267-272.
- 65. Rohilla, P.P.; Pal, D.T. and Choudhory, H. (2002). Growth performance of broiler rabbits under different levels of protein. Indian J. Anim. Sci. **72**(6): 516-517.
- 66. Rose, C.J. and White, G.A. (1980). Apparent digestibilities of DM, OM, CP, Energy and ADF of chopped raw sweet potato (Ipomoea batatas) by village pigs. Papua New Guinea Agril. J. **31** (1-4): 69-72.
- 67. Saikia, G. (1998). Evaluation of Ajar seed (Lagerstroemia flos-reginae) as a source of energy feed for rabbits. Ph.D. thesis, Assam Agril. Univ., Khanapara. Pp. 485.
- 68. Scott, G.J. (1991). Transforming traditional food crops: Product development for roots and tubers. Proceedings of the International Workshop on root and tuber crops processing, marketing and utilization in Asia, at CIP in April 22 to May 1, 1991. Pp. 5. In Production Development for Root and Tuber Crop: Vol. 1, Asia.
- Singh, R.; Sawal, R.K. and Bhatia, D.R. (1994). Nutrient utilization by rabbits on diets containing Kudzuvine hay. Indian J. Anim. Nutr. 11(4): 255-258.
- 70. Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods. 7th edn., Iowa State University Press, Iowa.
- Spreadbury, D. and Davidson, J. (1978). A study of the need for fibre by the growing New Zealand White rabbit. J. Sci. Food Agric. 29: 640-648.
- 72. Sreemannaryana, O.; Ramachandralah, K.; Kumar, K.M.S.; Ramanalah, N.V. and Ramaprasad, J. (1993). Utilization of azolla as rabbit feed. Indian Vet. J. **70**(3): 285-286.

138

- 73. Srinivas, B.; Biswas, J.C. and Somvanshi, R. (1994). Effect of different levels of protein feeding on dry matter intake, nutrient utilization, growth and carcass characteristics of broiler rabbits. IN: Current advances in Veterinary Science and Animal Production in India. Edited by Somvanshi, R. and Lokeshwar, R.R., 1994, Inter. Book Distr. Co., Lucknow, India.
- Stephan, E. (1980). The influence of environmental temperature on meat rabbits of different breeds. Proc. World Rabbit Cong. 2nd Vol. I, pp. 399-409.
- 75. Sundaram, R.N.S.; Chakurkar, E.B. and Bhattacharyya, A.R. (1997). Voluntary feed intake and nutrient digestibility of exotic meat rabbit under tropical coastal climate. Indian Vet. J. **74**(1): 80-81.
- 76. Swarooparani, K.; Sastry, V.R.B.; Agarwal, D.K. and Katiyar, R.C. (1997). Nutritional efficiency of fryer rabbits fed different levels of protein and energy. Proc. VIII. Anim. Nutr. Res. Worker's Conf. Chennai 12-14th Dec,. 1997, pp. 27.
- 77. Szylit, O.; Durand, M.; Borgida, L.P.; Atinkpahoun, H.; Prieto, F. and Delort-Laval, J. (1978). Raw and steampelleted cassava, sweet potato and yam cayenensiss as starch sources for ruminant and chicken diets. Animal Feed. Sci. Tech. **3**: 73-87.
- 78. Takahashi, S.; Mori, A.; Jitsukawa, Y.; Himeno, K. and Morimoto, H. (1968). Studies on nutritive value of feedstuffs for pigs. 3. Brans and others. Bulletin of National Institute of Animal Industry. **17**: 15-19.
- Talapatra, S.K.; Roy, S.C. and Sen, K.C. (1940). The analysis of mineral constituents in biological material. I. Estimation of phosphorus, chlorine, calcium, magnesium, sodium and potassium in feeding stuffs. Indian J. Vet. Sci. and A.H. 10: 243.
- 80. Teguia, A.; Tchoumboue, J.; Mayaka, B.T. and Tankou, C.M. (1993). The growth of broiler chickens as affected by the replacement of graded levels of maize by sweet potato leaves (Ipomoea batatas) or Ndole (Vernonia sp.) in the finisher diet. Anim. Feed Sci. Tech. 40: 233-237.
- 81. Tomita, Y.; Hayashi, K. and Hashizume, T. (1985). Palatability of pigs to sweet potato-silage and digestion trial by them. Bulletin of the Faculty of Agriculture, Kagoshima Univ. No. **35**: 75-80.
- 82. Tortuero, F.; Rioperez, J. and Rodriguez, M.L. (1989). Nutritional value for rabbits of olive pulp and the effect on their visceral organs. Anim. Feed Sci. Tech. **25** (1-2): 79-87.
- 83. Voris, L; Marcy, L.F.; Thacker, E.J. and Wainio, W.W. (1940). Digestible nutrients of feeding stuffs for the domestic rabbit. J. Agric. Res. **61**: 673-683.
- 84. Wu, J.F. (1980). Energy value of sweet potato chips for young swine. J. Anim. Sci. 51(6): 1261-1265.
- 85. Yadav, B.P.S.; Gupta, H.K. and Gupta, J.J. (1995). Sweet potato (Ipomoea batatus L.) as a component of swine ration. Indian J. Anim. Sci. **65**(4): 455-459.
- Yoshida, M. and Morimoto, H. (1958). The nutritive value of sweet potato as carbohydrate source of poultry feeds. World Poult. Sci. J. 14(3): 246.